В какую сторону кислотные свойства выражаются сильнее

Медь, Cu

Латинское название — Cuprum, символ — Cu. Относительная атомная масса — 63,5. Медь находится в 4 периоде, I B-группе ПСХЭ. Порядковый номер — 29.

Распределение электронов по уровням и подуровням характеризует следующая электронная формула: 1s2 2s22p6 3s23p63d10 4s1. В возбужденном состоянии на 4s уровень и подуровень «проскакивает» один d-электрон. Атом получает более устойчивую конфигурацию электронных оболочек.

Типичные значения валентностей и степеней окисления в соединениях: I(+), II(+), 0, +1, +2 соответственно. Заряд катиона 2+.

Способ получения меди в лаборатории — восстановление из оксида с помощью водорода при нагревании.

Промышленное получение:

  • Восстановление водородом. Схема процесса: Cu+2O + H2 → Cu + H2O.
  • Металлотермия. Происходит реакция обмена CuO + H2SO4 →CuSO4 + H2O. далее идет вытеснение меди железом CuSO4 + Fe → FeSO4 + Cu↓.
  • Электролиз водного раствора сульфата меди. На катоде происходит восстановление Cu2+ + 2ē → Cu; на аноде — окисление 2H2O – 4ē → 4H+ + O2↑. 

Описание металла — простого вещества

  • золотисто-красный цвет (рис. 2);
  • металлический блеск;
  • пластичен, легко вытягивается в проволоку и прокатывается в листы;
  • тепло- и электропроводность высокие.

Рис. 2. Медь

Химические свойства:

  • Медь в ряду активности находится после водорода, это инертный металл.
  • Не взаимодействует с водой.
  • Не реагирует при обычных условиях с водородом, углеродом, кремнием, азотом, с растворами соляной и серной кислот, растворами щелочей.
  • Взаимодействует с концентрированными растворами серной и азотной кислот.

Таблица 1

Важнейшие соединения меди

Класс веществ

Название соединения

Характер свойств

Оксиды

Оксид меди (I) Cu2OОсновной.

Оксид меди (II) CuO

Амфотерный (преобладают основные свойства).

Гидроксиды

Гидроксид меди (I) СuOH

Основной.

Гидроксид меди (II) Cu(ОН)2Амфотерный (преобладают основные свойства).

Применение меди, ее соединений и сплавов:

  • изготовление конденсаторов, механизмов для часов, ювелирных изделий с применением латуни (сплава);
  • использование чистого металла и сплавов в машиностроении;
  • использование оксидов в производстве стекла, эмалей;
  • производство дистилляторов воды;
  • выпуск проволоки, кабеля.

Кристаллогидрат сульфата меди (медный купорос) — средство для борьбы с грибковыми инфекциями растений. Применяется в смеси с гашеной известью для получения более сильной бордоской жидкости. Медь используется в производстве микроудобрений. Элемент необходим растениям и животным для нормального роста и развития.

Сравнение с неметаллами

Металлы существенно отличаются от неметаллов физическими и химическими свойствами. Сравнительная характеристика металлов и неметаллов представлена в таблице.

Признак

Металлы

Неметаллы

Блеск

Есть. Самые блестящие – ртуть, серебро, палладий

Отсутствует

Агрегатные состояния

Твёрдые (исключение – ртуть)

Газ, жидкость, твёрдое вещество

Электропроводность

Являются электропроводниками. Наилучшая электропроводность у серебра, золота, меди, алюминия

Являются изоляторами (исключение – углерод, кремний)

Пластичность

Ковкие

Хрупкие

Несмотря на то, что графит – модификация углерода, он имеет металлический блеск и обладает электропроводностью. Йод также напоминает металл характерным блеском.

Рис. 2. Графит.

Разбор типовых вариантов заданий №2 ЕГЭ по химии

Вариант 2ЕХ1

Из указанных в ряду химических элементов выберите три элемента, которые в Периодической системе химических элементов Д. И. Менделеева находятся в одном периоде. Расположите выбранные элементы в порядке возрастания их металлических свойств.

  1. Sr
  2. F
  3. C
  4. I
  5. Sb

Самое типичное задание — выявив элементы одного периода, расставить их в порядке возрастания или уменьшения металлических (или неметаллических) свойств. Напомню закономерности в таблице Менделеева, о которых мы писали в разборе к ОГЭ:

В периоде слева направо ⇒ 

УвеличиваетсяУменьшается
  • Заряд ядра атома
  • Электротрицательность
  • Неметаллические свойства
  • Число валентных электронов
  • Высшая степень окисления
  • Кислотные свойства  гидроксидов, образованные элементами
  • Не меняется число электронных слоев
  • Радиус атома
  • Легкость отдачи электрона
  • Металлические свойства
  • Основные свойства гидроксидов, образованные элементами

Основные свойства соединений (оксидов, гидроксидов) уменьшаются, сменяются амфотерными,  кислотные свойства (оксидов, кислородных кислот) увеличиваются.

В группе сверху вниз ⇓

УвеличиваетсяУменьшается
  • Заряд ядра атома;
  • Радиус атома
  • Легкость отдачи электрона
  • Металлические свойства
  • Основные свойства гидроксидов, образованные элементами
  • Число электронных слоев
  • Кислотные свойства бескислородных кислот
  • Электроотрицательность
  • Неметаллические свойства
  • Кислотные свойства соединений (оксидов, кислородных кислот) уменьшаются

Основные свойства соединений (оксидов, гидроксидов) увеличиваются, кислотные свойства соединений (оксидов, кислородных кислот) уменьшаются;

Не меняется число валентных электронов и степень окисления химических элементов в одной группе.

Определяем, что это стронций, сурьма и йод. Далее нам нужно расставить их в порядке возрастания металлических свойств, значит справа налево — йод — сурьма — стронций!

Вариант 2ЕХ2

Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке увеличения радиуса атома.

  1. Br
  2. O
  3. Se
  4. F
  5. Li


увеличиваетсясправа налево:

Вариант 2ЕХ3

Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения основных и увеличения кислотных свойств высшего гидроксида.

  1. C
  2. Be
  3. Mg
  4. S
  5. P

В данном варианте вспоминаем свойства гидроксидов — типичные основания у нас в начале периода — а типичные кислоты — в конце, поэтому…

Строго говоря, говорить о гидроксидах фосфора и серы как о гидроксидах нельзя, так как они их просто не образуют, но в данных заданиях под гидроксидами подразумеваются соединения-продукты взаимодействия высших оксидов с водой, поэтому, конечно, в начале периода идут типичные основные гидроксиды, а в конце — кислотные. Магний — фосфор — сера.

Мы разобрали хоть и всего три примера, но они покрывают необходимые знания, главное — запомните, пожалуйста, теорию к данному заданию!

Алгоритм разбора ОВР

Для того чтобы в готовой химической реакции учащийся мог расставить коэффициенты, необходимо воспользоваться специальным алгоритмом. Окислительно-восстановительные свойства помогают решать и разнообразные расчетные задачи в аналитической, органической, общей химии. Предлагаем порядок разбора любой реакции:

Сначала важно определить у каждого имеющегося элемента степень окисления, используя правила.
Далее определяют те атомы либо ионы, которые поменяли свою степень окисления, будут участвовать в реакции.
Знаками «минус» и «плюс» указывают число отданных и принятых в ходе химической реакции свободных электронов.
Далее между числом всех электронов определяется минимальное общее кратное, то есть целое число, которое без остатка делится на принятые и отданные электроны.
Затем его делят на электроны, участвовавшие в химической реакции.
Далее определяем, какие именно ионы либо атомы восстановительными свойствами обладают, а также определяют окислители.
На завершающем этапе ставят коэффициенты в уравнении.

Применяя способ электронного баланса, расставим коэффициенты в данной схеме реакции:

NaMnO4 + сероводород + серная кислота= S + Mn SO4 +…+…

Физические

Все металлы обладают физическими и механическими свойствами. К физическим свойствам относятся:

  • плотность – содержание вещества в единице объёма;
  • температура плавления – значение, при котором металл переходит из твёрдого состояния в жидкое;
  • электропроводность – способность проводить электрический ток;
  • теплопроводность – способность передавать тепло;
  • удельная теплоёмкость – количество тепла, необходимое для повышения температуры 1 г металла на 1°С;
  • тепловое расширение – увеличение объёма при нагревании;
  • магнитные свойства – способность намагничиваться и притягивать другие металлы (свойством обладают железо, кобальт, никель, гадолиний).

В соответствии с температурой плавления все металлы делятся на два типа:

  • легкоплавкие – приобретают жидкую форму при температуре в пределах 1000°С (цезий, галлий, ртуть);
  • тугоплавкие – плавятся при температуре выше 1000°С (вольфрам, хром, ванадий).

К механическим свойствам относятся:

  • пластичность;
  • твёрдость;
  • упругость;
  • прочность.

Механические свойства металлов важны при создании сплавов – смесей металла и неметалла. Получившийся сплав проверяют на работоспособность и подвергают испытаниям – растяжению, ударам и т.д.

Сплавы, в состав которых входит железо, называются чёрными металлами. К цветным металлам относятся сплавы остальных металлов.

Рис. 3. Чёрные и цветные металлы.

Валентные элементы в группах

Нетрудно заметить, что внутри каждой группы элементы похожи друг на друга своими валентными электронами (электроны s и p-орбиталей, расположенных на внешнем энергетическом уровне).

У щелочных металлов — по 1 валентному электрону:

  • Li — 1s22s1;
  • Na — 1s22s22p63s1;
  • K — 1s22s22p63s23p64s1

У щелочноземельных металлов — по 2 валентных электрона:

  • Be — 1s22s2;
  • Mg — 1s22s22p63s2;
  • Ca — 1s22s22p63s23p64s2

У галогенов — по 7 валентных электронов:

  • F — 1s22s22p5;
  • Cl — 1s22s22p63s23p5;
  • Br — 1s22s22p63s23p64s23d104p5

У инертных газов — по 8 валентных электронов:

  • Ne — 1s22s22p6;
  • Ar — 1s22s22p63s23p6;
  • Kr — 1s22s22p63s23p64s23d104p6
Римский номер столбца группы — это количество валентных электронов у всех элементов данной группы.

Дополнительную информацию см. в статье Валентность и в Таблице электронных конфигураций атомов химических элементов по периодам.

Обратим теперь свое внимание на элементы, расположенные в группах с символов В. Они расположены в центре периодической таблицы и называются переходными металлами

Отличительной особенностью этих элементов является присутствие в атомах электронов, заполняющих d-орбитали:

  1. Sc — 1s22s22p63s23p64s23d1;
  2. Ti — 1s22s22p63s23p64s23d2

Отдельно от основной таблицы расположены лантаноиды и актиноиды — это, так называемые, внутренние переходные металлы. В атомах этих элементов электроны заполняют f-орбитали:

  1. Ce — 1s22s22p63s23p64s23d104p64d105s25p64f15d16s2;
  2. Th — 1s22s22p63s23p64s23d104p64d105s25p64f145d106s26p66d27s2

Подробнее см. Атомы переходных элементов (металлов)…

Цинк, Zn

Латинское название Zincum, химический символ Zn. Элемент 4 периода, расположен во II группе, В-подгруппе. Порядковый номер 30. Масса — 65,37. Строение электронных оболочек: 1s2 2s22p6 3s23p63d10 4s2 (в основном состоянии). Валентность и степень окисления: II(+) и +2 (соответственно).

Способы получения в промышленности:

  • Восстановление углеродом при нагревании: ZnO+ C→ CO↑ + Zn.
  • Гидрометаллургия: ZnO + H2SO4 → ZnSO4+ H2O; ZnSO4+ Fe → FeSO4+ Zn↓.
  • Электролиз: цинк восстанавливается на катоде Zn2+ + 2H+ + 4ē → Zn↓ + H2.

Цинк — металл серебристо-серого цвета (рис. 3). Твердый, проводит тепло и электричество. Окисляется кислородом при нагревании. Не взаимодействует с бором, углеродом, кремнием, азотом. В воде не растворяется, но при сильном нагревании реагирует с водяным паром с образованием оксида цинка и выделением водорода. Реагирует с кислотами, кроме азотной, вытесняет водород. Вытесняет металлы, расположенные в ряду активности правее, из растворов их солей. 

Рис. 3. Цинк

Таблица 2

Характеристика соединений

Классы веществ

Названия и формулы

Свойства

Оксиды

Оксид цинка, ZnO

Амфотерный.

Гидроксиды

Гидроксид цинка Zn(ОН)2

Амфотерный.

Цинк находит применение как защитный материал для предотвращения ржавчины (оцинковки) изделий из стали, железа. Металл используется в строительстве, производстве бытовой техники и для других целей.

Характеристика металлов IA группы

Элементы Li, Na, K, Rb, Cs, Fr обладают сильными металлическими свойствами. Свое тривиальное название «щелочные металлы» они получили за едкие свойства растворимых оснований (щелочей). Лучше изучены первые три представителя группы. Франций является радиоактивным элементом, его химические свойства еще только исследуются в экспериментах.

Общая характеристика по положению в ПС и строению атома:

  • Заряды ядер соответствуют порядковым номерам элементов, только со знаком «+». Например, заряд ядра натрия равен + 11, калия + 19. 
  • Электронная конфигурация в невозбужденном состоянии повторяет строение предыдущего инертного газа плюс 1 электрон на уровне, имеющем такой же номер, как период. Например, строение атома лития отражает формула (He)2s1, где (He) — это электронное строение атома гелия 1s2, а 2s1 — номер последнего энергетического уровня, подуровень, количество электронов на нем.
  • Радиус элементов IA группы возрастает от 0,152 у лития до 0,248 нм у рубидия. Электроотрицательность снижается от лития (0,98) до франция (0,7).
  • Внешний энергетический уровень содержит 1 электрон, слабо связанный с ядром. Отдавая его, атомы превращаются в однозарядные катионы.

Щелочные металлы образуют соединения с ионной кристаллической решеткой с галогенами, кислородом и азотом.

Простые вещества химически очень активны: взаимодействуют с водой со взрывом, загораются на воздухе. Щелочные металлы хранят в лабораториях в запаянных ампулах, или в банках под слоем жидкости, не содержащей воду.

Ионы существенно отличаются по свойствам от атомов. Натрий, калий в виде однозарядных катионов являются макроэлементами, необходимыми для живых организмов.

Инертные (благородные) газы

Группа VIII(18). Атомы элементов этой группы имеют полностью «укомплектованный» внешний электронный слой. Поэтому им «не надо» принимать электроны. И отдавать их они «не хотят». Отсюда — элементы этой группы очень «неохотно» вступают в химические реакции. Долгое время считалось, что они вообще не вступают в реакции (отсюда и название «инертный», т.е. «бездействующий»). Но химик Нейл Барлетт открыл, что некоторые из этих газов при определенных условиях все же могут вступать в реакции с другими элементами.

Электронные конфигурации:

  • Ne — 1s22s22p6;
  • Ar — 1s22s22p63s23p6;
  • Kr — 1s22s22p63s23p64s23d104p6

Подробнее об инертных (благородных) газах см. Атомы элементов 0 группы: общая характеристика…

Разбор ОВР с участием перекиси водорода

Применяя алгоритм разбора ОВР, можно составить уравнение протекающей реакции:

перекись водорода + серная кислота + пермагнанат калия = Mn SO4 + кислород + …+…

Степени окисления изменили ион кислорода (в перекиси водорода) и катион марганца в перманганате калия. То есть восстановитель, а также окислитель у нас присутствуют.

Определим, что за вещества еще могут получиться после взаимодействия. Одно из них будет водой, что вполне очевидно, представлена реакция между кислотой и солью. Калий не образовал нового вещества, вторым продуктом станет соль калия, а именно сульфат, так как реакция шла с серной кислотой.

Схема:

2O – отдает 2 электрона и превращается в O25

Mn+7 принимает 5 электронов и становится ионом Mn+2 2

Поставим коэффициенты.

5H2O2 + 3H2SO4 + 2KMnO4 = 5O2 + 2Mn SO4 + 8H2O + K2SO4

Периоды и группы

Как уже говорилось выше, периодическая таблица состоит из семи периодов. В каждом периоде атомные номера элементов увеличиваются слева направо.

Свойства элементов в периодах изменяются последовательно: так натрий (Na) и магний (Mg), находящиеся в начале третьего периода, отдают электроны (Na отдает один электрон: 1s22s22p63s1; Mg отдает два электрона: 1s22s22p63s2). А вот хлор (Cl), расположенный в конце периода, принимает один элемент: 1s22s22p63s23p5.

Свойства химических элементов в пределах одного периода различаются.

В группах же, наоборот, все элементы обладают одинаковыми свойствами. Например, в группе IA(1) все элементы, начиная с лития (Li) и заканчивая францием (Fr), отдают один электрон. А все элементы группы VIIA(17), принимают один элемент.

Некоторые группы настолько важны, что получили особые названия. Эти группы рассмотрены ниже.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора — количество сильной кислоты или сильного основания, которые можно добавить не повлияв на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Характеристика кислотных оксидов

Кислотные оксиды – это оксиды неметаллов или переходных металлов в высоких степенях окисления (от +4 до +7). Кислотные оксиды (ангидриды) проявляют кислотные свойства и образуют кислородосодержащие кислоты. Следовательно, кислотным оксидам соответствуют кислоты. Например, кислотным оксидам SO2 ,SO3 соответствуют кислоты H2 SO3 и H2 SO4 .

Рис. 1. Кислотные оксиды список.

Если кислотный оксид имеет высшую степень окисления, то его относят к высшим оксидам. В периоде слева направо металлические свойства химических элементов ослабевают, соответственно, кислотные свойства высших оксидов и их гидратов постепенно изменяются от основных к кислотным (кислотные свойства оксидов и их гидратов слева направо в периоде усиливаются).

Рис. 2. Таблица изменение характера оксидов.

Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность (ЭО)  — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s2 2p5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX) позволит судить о типе химической связи. Если величина Δ X = 0  –  связь ковалентная неполярная.

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной, например: связь H—F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными. Например: связь Na—Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

 Степень окисления

Степень окисления (СО) — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

При образовании ионной связи происходит переход электрона от менее электроотрицательного атома к более электроотрицательному, атомы теряет свою электронейтральность, превращается в ионы. возникают целочисленные заряды.

При образовании ковалентной полярной связи электрон переходит не полностью, а частично, поэтому возникают частичные заряды (на рисунке ниже HCl).

Представим, что электрон перешел полностью от атома водорода к хлору, и на водороде возник целый положительный заряд +1, а на хлоре -1. такие условные заряды и называют степенью окисления.

У металлов главных подгрупп – одна характерная СО, у неметаллов, как правило, наблюдается разброс СО.

Поэтому неметаллы образуют большое количество соединений и обладают более «разнообразными» свойствами, по сравнению с металлами.

Примеры определения степени окисления

Определим степени окисления хлора в соединениях:

Те правила, которые мы рассмотрели не всегда позволяют рассчитать СО всех элементов, как например в данной молекуле аминопропана.

Здесь удобно пользоваться следующим приемом:

1)Изображаем структурную формулу молекулы, черточка – это связь, пара электронов.

2) Черточку превращаем в стрелку, направленную к  более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть – нет перехода электронов.

3) Считаем сколько электронов «пришло» и «ушло».

Например, посчитаем заряд первого атома углерода. Три стрелки направленны к атому, значит, 3 электрона пришло, заряд -3.

Второй атом углерода: водород отдал ему электрон, а азот забрал один электрон. Заряд не поменялся, равен нулю. И т.д.

Валентность

Вале́нтность (от лат. valēns «имеющий силу») — способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью  понимается способность  атомов к образованию определённого числа ковалентных связей.  Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е.

его валентность будет равна n + m. При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого»  состояния.

Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH)42-, BF4— и NH4+), фосфора — 5 (PCl5), серы — 6 (H2SO4), хлора — 7 (Cl2O7).

В азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4, т.к имеет только 4 орбитали на внешнем уровне (а связь можно рассматривать как перекрывание орбиталей). И вообще, любой элемент второго периода по этой же причине не может иметь валентность большую 4.

Ещё несколько «коварных» вопросов, в которых часто делают ошибки.

Как изменяются металлические свойства в периодической системе

Периодическая таблица Менделеева состоит из групп и периодов. Периоды располагаются по горизонтали таким образом, что первый период включает в себя: литий, бериллий, бор, углерод, азот, кислород и так далее. Химические элементы располагаются строго по увеличению порядкового номера.

Группы располагаются по вертикали таким образом, что первая группа включает в себя: литий, натрий, калий, медь, рубидий, серебро и так далее. Номер группы указывает на количество отрицательных частиц на внешнем уровне определённого химического элемента. В то время, как номер периода указывает на количество электронных облаков.

Металлические свойства усиливаются в ряду справа налево или, по-другому, ослабевают в периоде. То есть магний обладает большими металлическими свойствами, чем алюминий, но меньшими, нежели натрий. Это происходит потому, что в периоде количество электронов на внешней оболочке увеличивается, следовательно, химическому элементу сложнее отдавать свои электроны.

В группе все наоборот, металлические свойства усиливаются в ряду сверху вниз. Например, калий проявляется сильнее, чем медь, но слабее, нежели натрий. Объяснение этому очень простое, в группе увеличивается количество электронных оболочек, а чем дальше электрон находится от ядра, тем проще элементу его отдать. Сила притяжения между ядром атома и электроном в первой оболочке больше, чем между ядром и электроном в 4 оболочке.

Сравним два элемента – кальций и барий. Барий в периодической системе стоит ниже, чем кальций. А это значит, что электроны с внешней оболочки кальция расположены ближе к ядру, следовательно, они лучше притягиваются, чем у бария.

Сложнее сравнивать элементы, которые находятся в разных группах и периодах. Возьмём, к примеру, кальций и рубидий. Рубидий будет лучше отдавать отрицательные частицы, чем кальций. Так как он стоит ниже и левее. Но пользуясь только таблицей Менделеева нельзя однозначно ответить на этот вопрос сравнивая магний и скандий (так как один элемент ниже и правее, а другой выше и левее). Для сравнения этих элементов понадобятся специальные таблицы (например, электрохимический ряд напряжений металлов).

Химические свойства кислотных оксидов

Кислотные оксиды обладают рядом химических свойств:

Кислотные оксиды вступают в реакцию с водой, в результате с которой образуют кислоты:

CO2 (углекислый газ)+H2 O (вода)=H2 CO3 (угольная кислота)

Cуществуют оксиды, которые не вступают в реакцию с водой, например, оксид кремния – SiO2

Кислотные оксиды могут взаимодействовать с другими видами оксидов – основными, образуя при этом соли:

SO3 (кислотный оксид)+Na2 O (основной оксид)=Na2 So4 (соль – сульфат натрия)

Также кислотные оксиды взаимодействуют с основаниями, в результате чего образуются соли:

SO3 (кислотный оксид)+2NaOH (основание)=Na2 SO4 (соль- сульфат натрия)+H2 O (вода)

Если данному оксиду соответствует многоосновная кислота, то так же может образоваться кислая соль:

Na2 SO4 (сульфат натрия)+2H2 O (вода)+SO3 (оксид серы)=2NaHSO4 (кислая соль – гидросульфат натрия)+H2 O (вода)

Нелетучие кислотные оксиды в солях имеют способность замещать летучие оксиды:

SiO2 (оксид кремния)+Na2 CO3 (карбонат натрия)3+Na2 SiO3 (соль – метасиликат натрия)+CO2

Кислотные оксиды могут образовываться при разложении в результате нагревания сложных веществ, содержащих кислород, – кислот, нерастворимых оснований, солей:

H2 SiO3 (кремниевая кислота)=SiO2 (оксид кремния)+H2 O (вода).

Рис. 3. Кремниевая кислота.

Что мы узнали?

Кислотные оксиды – вещества, образованные из атомов кислорода и неметаллов или переходных металлов. Они могут взаимодействовать и вступать в реакцию с водой, основными оксидами, основаниями, а нелетучие оксиды имеют способность в солях заменять летучие оксиды.

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

Пример разбора ОВР с участием иодида калия

Вооружившись правилами, составим уравнение:

перманганат калия + серная кислота + иодид калия…сульфат марганца + йод +…+…

Степени окисления изменили марганец и йод. То есть восстановитель и окислитель присутствуют.

Теперь выясним,что в итоге у нас образуется. Соединение будет у калия, то есть получим сульфат калия.

Восстановительные процессы протекают у ионов йода.

Составим схему передачи электронов:

— Mn+7 принимает 5 e = Mn+2 2 является окислителем,

— 2I- отдает2 e = I25 является восстановителем.

Расставляем коэффициенты в начальную реакцию, не забываем при этом суммировать все атомы серы в данном уравнении.

210KI + KMnO4 + 8H2SO4 = 2MnSO4 + 5I2 + 6K2SO4 + 8H2O

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий