Таблица электроотрицательности химических элементов

Уменьшение — электроотрицательность

Уменьшение электроотрицательности проявляется в устойчивости гидридов, исключительно высокой у углеводородов и крайне незначительной у гидрида свинца ( общие химические свойства углеводородов описаны на стр.

Уменьшение электроотрицательности элементов, принадлежащих к одному и тому же периоду, с уменьшением номера группы обусловлено уменьшением заряда ядра элемента, а уменьшение электроотрицательности элементов, принадлежащих к одной и той же группе, при увеличении номера периода обусловлено увеличением расстояния от ядра до электронов, ответственных за химическую связь, и экранированием его достроенными электронными оболочками, находящимися на более низких энергетических уровнях.

Фенилдихлорфосфазоуглеводороды RN-P ( C8H5 C12.

Уменьшение электроотрицательности заместителей Y при фосфоре резко сказывается на способности фосфазосоединений к димеризации. При замене в молекуле трихлорфосфазоарила даже одного атома хлора на менее отрицательный фенильный радикал способность к димеризации резко уменьшается.

С уменьшением электроотрицательности галогенов уменьшается и склонность серы к взаимодействию с ними. С бромом, например, сера образует только цепочечные бромиды полисеры. Мало известно о иодидах серы, хотя катионы состава ( S. D и ( 8214) обнаружены в некоторых соединениях.

Влияние добавок ( 0 3 % ат. к МоО3 на скорость.| Влияние добавок.| Влияние добавок ( 0 05 % мольн. к TiO2 на окисление бутена-1 в малеиновый ангидрид.

При уменьшении электроотрицательности этих добавок степень превращения бутена-1 падает. Однако их присутствие не влияет на образование малеинового ангидрида, но уменьшает образование продуктов глубокого окисления. Присутствие иона Мо6 повышает степень превращения бутена-1 и увеличивает селективность образования малеинового ангидрида. Эти данные доказывают, что для характеристики добавки, вводимой в окисел, существенной явля-ется не только ее электроотрицательность.

При уменьшении электроотрицательности заместителей связь РО становится все более полярной и, следовательно, все более чувствительной к эффектам ассоциации и дипольного взаимодействия. Это неизбежно приводит к уменьшению точности предсказаний.

Это вызывает уменьшение электроотрицательности кислорода, а последнее — большую поляризацию связи кислород — водород, что способствует отщеплению водорода в виде протона и тем самым проявлению кислотных свойств.

По мере уменьшения электроотрицательности атомов галогенов падает и энергия образующихся водородных связей.

В связи с уменьшением электроотрицательности в главных группах периодической системы возрастают металлические свойства элементов. Увеличение радиуса атомов в IV ( С, Si, Ge, Sn, Pb), V ( N, P, As, Sb) и VI ( О, S, Se, Те) группах приводит к изменению характера элементов от ярко выраженных неметаллов к металлам.

Робинсон, с уменьшением электроотрицательности центрального атома серы под действием неподеленных электронных пар.

Жесткость оснований уменьшается параллельно с уменьшением электроотрицательности атомов сверху вниз и в несколько меньшей степени справа налево по периодической системе. Галогены, как правило, выступают в роли монодентатных лигандов и не входят в состав функциональных аналитических групп хелатообразующих реагентов.

Заряды на атомах и дипольные моменты дигидро — ЗН-14 — бензди.

Полярность соединений 11 увеличивается при уменьшении электроотрицательности заместителя R1, что и следовало ожидать, учитывая влияние электронодонорных и электро-ноакцепторных заместителей на распределение электронной плотности в молекулах органических веществ. Аналогично объясняется влияние других заместителей на дипольные моменты изученных 1 2-диг идро — ЗН-14 — бенздиазепинов.

Корреляция электроотрицательности с другими свойствами


Изменение изомерного сдвига ( ось y , в мм / с) анионов [SnX 6 ] 2- , измеренная с помощью мессбауэровской спектроскопии 119 Sn, в зависимости от суммы электроотрицательностей по Полингу галогенидных заместителей ( ось x ).

Широкое разнообразие методов расчета электроотрицательностей, которые все дают результаты, которые хорошо коррелируют друг с другом, является одним из показателей количества химических свойств, на которые может влиять электроотрицательность. Наиболее очевидное применение электроотрицательностей — это обсуждение полярности связи , концепция которого была введена Полингом. В общем, чем больше разница в электроотрицательности между двумя атомами, тем более полярная связь будет образовываться между ними, причем атом, имеющий более высокую электроотрицательность, находится на отрицательном конце диполя. Полинг предложил уравнение, связывающее «ионный характер» связи с разницей в электроотрицательности двух атомов, хотя оно в некоторой степени вышло из употребления.

Было показано несколько корреляций между инфракрасными частотами растяжения определенных связей и электроотрицательностями задействованных атомов: однако это неудивительно, поскольку такие частоты растяжения частично зависят от прочности связи, которая учитывается при расчете электроотрицательностей Полинга. Более убедительными являются корреляции между электроотрицательностью и химическими сдвигами в ЯМР-спектроскопии или изомерные сдвиги в мессбауэровской спектроскопии (см. Рисунок). Оба этих измерения зависят от плотности s-электронов в ядре, и поэтому являются хорошим показателем того, что различные меры электроотрицательности действительно описывают «способность атома в молекуле притягивать электроны к себе».

Валентность

Вале́нтность (от лат. valēns «имеющий силу») — способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью  понимается способность  атомов к образованию определённого числа ковалентных связей.  Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m. При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого»  состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH)42-, BF4— и NH4+), фосфора — 5 (PCl5), серы — 6 (H2SO4), хлора — 7 (Cl2O7).

В ряде случаев, валентность может численно совпадать со степенью окисления, но ни коим образом они не тождественны друг другу. Например, в молекулах  N2 и CO реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления азота равна 0, углерода +2, кислорода −2.

В азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4, т.к имеет только 4 орбитали на внешнем уровне (а связь можно рассматривать как перекрывание орбиталей). И вообще, любой элемент второго периода по этой же причине не может иметь валентность большую 4.

Ещё несколько «коварных» вопросов, в которых часто делают ошибки.

Тренировочные задания

1. Среди перечисленных химический элемент с максимальным радиусом атома — это

1) неон 2) алюминий 3) калий 4) кальций

2. Среди перечисленных химический элемент с минимальным радиусом атома — это

1) алюминий 2) бор 3) калий 4) неон

3. Наиболее ярко металлические свойства выражены у элемента

1) Rb 2) Li 3) Mg 4) Ca

4. Наиболее ярко неметаллические свойства выражены у элемента

1) F 2) S 3) O 4) N

5. Наибольшее число валентных электронов у элемента

1) фтор 2) водород 3) натрий 4) сера

6. Наименьшее число валентных электронов у элемента

1) кислород 2) кремний 3) водород 4) кальций

7. Металлические свойства элементов возрастают в ряду

1) Ba, Li, Cs, Mg 2) Al, Mg, Ca, K 3) Li, Cs, Mg, Ba 4) Na, Mg, Li, Al

8. Неметаллические свойства элементов ослабевают в ряду:

1) N, S, Br, Cl 2) O, S, Se, Te 3) Se, I, S, O 4) N, P, O, F

9. Химические элементы перечислены в порядке возрастания атомного радиуса в ряду

1) углерод, бериллий, магний 2) калий, магний, алюминий 3) хлор, натрий, фтор 4) азот, фосфор, фтор

10. Химические элементы перечислены в порядке убывания атомного радиуса в ряду

1) водород, бор, алюминий 2) углерод, кремний, калий 3) натрий, хлор, фтор 4) сера, кремний, магний

11. Кислотные свойства водородных соединений усиливаются в ряду

1) HI – PH3 – HCl – H2S 2) PH3 – H2S – HBr – HI 3) H2S – PH3 – HCl – SiH4 4) HI – HCl – H2S – PH3

12. Кислотные свойства водородных соединений ослабевают в ряду

1) HI – PH3 – HCl – H2S 2) PH3 – H2S – HBr – HI 3) H2S – PH3 – HCl – SiH4 4) HI – HBr – HCl – HF

13. Основные свойства соединений усиливаются в ряду

1) LiOH – KOH – RbOH 2) LiOH – KOH – Ca(OH)2 3) Ca(OH)2 – KOH – Mg(OH)2 4) LiOH – Ca(OH)2 – KOH

14. Основные свойства соединений ослабевают в ряду

1) LiOH – Ba(OH)2 – RbOH 2) LiOH – Ba(OH)2 – Ca(OH)2 3) Ca(OH)2 – KOH – Mg(OH)2 4) LiOH – Ca(OH)2 – KOH

15. Во втором периоде Периодической системы элементов Д.И. Менделеева с увеличением заряда ядра у химических элементов:

1) возрастает электроотрицательность 2) уменьшается заряд ядра 3) возрастает атомный радиус 4) возрастает степень окисления

16. Наиболее сильной кислотой, образованной элементом второго периода, является

1) угольная 2) азотная 3) фтороводородная 4) азотистая

17. Наиболее сильное основание образует химический элемент

1) магний 2) литий 3) алюминий 4) калий

18. Наиболее сильная бескислородная кислота соответствует элементу

1) селен 2) фтор 3) йод 4) сера

19. В ряду элементов Li → B → N → F

1) убывает атомный радиус 2) возрастают металлические свойства 3) уменьшается число протонов в атомном ядре 4) увеличивается число электронных слоёв

20. В ряду элементов Li → Na → K → Rb

1) убывает атомный радиус 2) ослабевают металлические свойства 3) уменьшается число протонов в атомном ядре 4) увеличивается число электронных слоёв

Валентность. Валентные возможности атомов

Валентность — это способность атома присоединять ряд других атомов для образования химической связи.

Валентность может быть определена числом химических связей, образующих атом, или числом неспаренных электронов.

Валентность обозначается римскими цифрами и указывается над химическим элементом справа вверху и не имеет знака (+ или -). Может быть постоянной или переменной.

Для определения валентности применяются определенные правила:

  1. У металлов главных подгрупп валентность всегда постоянная и определяется по номеру группы.
  2. У металлов побочных подгрупп и неметаллов валентность переменная. Высшая валентность = номеру группы, а низшая = 8 — номер группы.

Валентность может совпадать со степенью окисления, но не имеет знака «+» или «-», не может быть равна нулю.

Валентные возможности атомов могут определяться:

  1. Количеством неспаренных электронов;
  2. Наличием свободных орбиталей;
  3. Наличием неподеленных пар электронов.

Валентные возможности водорода

Валентные возможности водорода определяются одним неспаренным электроном на единственной орбитали. Водород обладает слабой способностью отдавать или принимать электроны, поэтому для него характерны в основном ковалентные химические связи. Ионные связи он может создавать с металлами, образуя гидриды. Ковалентные химические связи образуются за счет общих электронных пар. Поскольку у водорода всего один электрон, он способен образовывать только одну связь. По этой причине для него характерна валентность равная I.

Валентные возможности углерода

На внешнем энергетическом уровне у углерода 4 электрона: 2 спаренных и 2 неспаренных. Это состояние атома называется основным. По числу неспаренных электронов можно сказать, что углерод проявляет валентность равную II. Однако такая валентность проявляется только в некоторых соединениях.

В органических соединениях и некоторых органических веществах углерод проявляет валентность равную IV. Эта валентность характерна для возбужденного состояния С. Из основного в возбужденное состояние он может переходить при получении дополнительной энергии.   Один электрон с s-подуровня переходит на p-подуровень, где есть свободная орбиталь.

Атом С способен присоединять и отдавать электроны с образованием ковалентных связей. Валентные возможности углерода очень широкие, он может принимать значение степени окисления от +4 до -4.

Валентные возможности азота

У азота на валентном энергетическом уровне находится 5электронов: 3 неспаренных и 2 спаренных. Исходя из этого, валентность азота может быть равна III. В возбужденное состоянии атом азота не может переходить. Однако азот может выступать в качестве донора при образовании ковалентных химических связей, обеспечивая своей электронной паре атом, имеющий свободную орбиталь. В этом случае валентность у азота будет равна IV, причем для азота, как элемента пятой группы, это максимальная валентность. Валентность V он проявлять не способен.

Валентные возможности фосфора

В отличие от азота,  фосфор имеет свободные 3d-орбитали, на которые могут переходить электроны. На внешнем энергетическом уровне находятся 3 неспаренных электрона. Атом фосфора способен переходить из основного состояния в возбужденное. Электроны с p-подуровня переходят на d-подуровень. В этом случае атом Р приобретает валентность, равную V. Таким образом, строение электронной оболочки атома увеличивает валентные возможности Р, по сравнению с азотом, от I до V.

Валентные возможности кислорода

На последнем энергетическом уровне у кислорода 2 неспаренных электрона. В соединениях чаще всего проявляет валентность II. У кислорода нет d-подуровня, поэтому переход электронов  невозможен. Валентные возможности очень ограничены – проявляет      II и III валентности.

Валентные возможности серы

Сера, так же, как и кислород, р в VI группе главной подгруппе ПСХЭ. Поэтому на валентном энергетическом уровне у серы 2 неспаренных электрона. Напрашивается вывод, что валентность серы равна II. Однако у серы есть и d-подуровень, который расширяет ее валентные возможности. Сера способна переходить из основного состояния в возбужденное, при этом может быть либо 4 неспаренных электрона, либо 6.

Таким образом, сера способна проявлять валентности II, IV, VI.

Опираясь на этот материал, можно определить все возможные валентности для любого химического элемента.

Смотри также:

  • Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь
  • Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения

Электроотрицательность

Электроотрицательность (ЭО)  — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s2 2p5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX) позволит судить о типе химической связи. Если величина Δ X = 0  –  связь ковалентная неполярная.

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной, например: связь H—F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными. Например: связь Na—Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

Валентность

Валентность атома химического элемента определяется в первую очередь числом неспаренных электронов, принимающих участие в образовании химической связи.

Валентные возможности атомов определяются:

• числом неспаренных электронов (одноэлектронных орбиталей);

• наличием свободных орбиталей;

• наличием неподеленных пар электронов.

В органической химии понятие «валентность» замещает понятие «степень окисления», с которым привычно работать в неорганической химии. Однако это не одно и то же. Валентность не имеет знака и не может быть нулевой, тогда как степень окисления обязательно характеризуется знаком и может иметь значение, равное нулю.

В основном, под валентностью понимается способность  атомов к образованию определённого числа ковалентных связей.  Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m. При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого»  состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4.

Постоянные валентности:

  • H, Na, Li, К, Rb, Cs — Степень окисления I
  • О, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd — Степень окисления II
  • B, Al, Ga, In — Степень окисления III

Переменные валентности:

  • Сu — I и II
  • Fe, Со, Ni —II и III
  • С, Sn, Pb — II и IV
  • P— III и V
  • Cr — II, III и VI
  • S — II, IV и VI
  • Mn—II, III, IV, VI и VII
  • N—II, III, IV и V
  • Cl—I, IV, VI и VII

Используя валентности можно составить формулу соединения.

Химическая формула — это условная запись состава вещества посредством химических знаков и индексов.

Например: Н2O-формула воды, где Н и О-химические знаки элементов, 2 — индекс, который показывает число атомов данного элемента, входящих в состав молекулы воды.

При названии веществ с переменной валентностью обязательно указывается его валентность, которая ставится в скобки. Например, Р205— оксид фосфора (V)

I. Степень окисления свободных атомови атомов в молекулах простых веществравна нулю — Na, Р4, О2

II. В сложном веществеалгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0. а в сложном ионеего заряду.

Например:

Разберем для примера несколько соединений и узнаем валентность хлора:

Справочный материал для прохождения тестирования:

Таблица электроотрицательности по Полингу

Атомный номер Элемент Название Значение
1 H Водород 2,20
2 He Гелий
3 Li Литий 0.98
4 Be Бериллий 1,57
5 B Бор 2,04
6 C Углерод 2,55
7 N Азот 3,04
8 O Кислород 3,44
9 F Фтор 3,98
10 Ne Неон
11 Na Натрий 0,93
12 Mg Магний 1,31
13 Al Алюминий 1,61
14 Si Кремний 1,90
15 P Фосфор 2,19
16 S Сера 2,58
17 Cl Хлор 3,16
18 Ar Аргон
19 K Калий 0,82
20 Ca Кальций 1,00
21 Sc Скандий 1,36
22 Ti Титан 1,54
23 V Ванадий 1,63
24 Cr Хром 1,66
25 Mn Марганец 1,55
26 Fe Железо 1,83
27 Co Кобальт 1,88
28 Ni Никель 1,91
29 Cu Медь 1,90
30 Zn Цинк 1,65
31 Ga Галлий 1,81
32 Ge Германий 2,01
33 As Мышьяк 2,18
34 Se Селен 2,55
35 Br Бром 2,96
36 Kr Криптон
37 Rb Рубидий 0,82
38 Sr Стронций 0,95
39 Y Иттрий 1,22
40 Zr Цирконий 1,33
41 Nb Ниобий 1,6
42 Mo Молибден 2,16
43 Tc Технеций 2,10
44 Ru Рутений 2,20
45 Rh Родий 2,28
46 Pd Палладий 2,20
47 Ag Серебро 1,93
48 Cd Кадмий 1,69
49 In Индий 1,78
50 Sn Олово 1,96
51 Sb Сурьма 2,05
52 Te Теллур 2,10
53 I Йод 2,66
54 Xe Ксенон 2,60
55 Cs Цезий 0,79
56 Ba Барий 0,89
57 La Лантан 1,10
58 Ce Церий 1,12
59 Pr Празеодим 1,13
60 Nd Неодим 1,14
61 Pm Прометий
62 Sm Самарий 1,17
63 Eu Европий
64 Gd Гадолиний 1,20
65 Tb Тербий
66 Dy Диспрозий 1,22
67 Ho Гольмий 1,23
68 Er Эрбий 1,24
69 Tm Тулий 1,25
70 Yb Иттербий
71 Lu Лютеций 1,0
72 Gf Гафний 1,3
73 Ta Тантал 1,5
74 W Вольфрам 1,7
75 Re Рений 1,9
76 Os Осмий 2,2
77 Ir Иридий 2,2
78 Pt Платина 2,2
79 Au Золото 2,4
80 Hg Ртуть 1,9
81 Tl Таллий 1,8
82 Pb Свинец 1,8
83 Bi Висмут 1,9
84 Po Полоний 2,0
85 At Астат 2,2
86 Rn Радон
87 Fr Франций 0,7
88 Ra Радий 0,9
89 Ac Актиний 1,1
90 Th Торий 1,3
91 Pa Протактиний 1,5
92 U Уран 1,7
93 Np Нептун 1,3
94 Pu Плутоний 1,3
95 Am Америций 1,13
96 Cm Кюрий 1,28
97 Bk Берклий 1,3
98 Cf Калифорний 1,3
99 Es Эйнштейний 1,3
100 Fm Фермий 1,3
101 Md Менделевий 1,3
102 No Нобелий 1,3

Таблица электроотрицательности

Группа I A II A III B IV B V B VI B VII B VIII B VIII B VIII B I B II B III A IV A V A VI A VII A VIII A
Период  
1

H
2,20

  He
 
2 Li
0,99
Be
1,57
  B
2,04
C
2,55
N
3,04
O
3,44
F
3,98
Ne
 
3 Na
0,98
Mg
1,31
  Al
1,61
Si
1,90
P
2,19
S
2,58
Cl
3,16
Ar
 
4 K
0,82
Ca
1,00
Sc
1,36
Ti
1,54
V
1,63
Cr
1,66
Mn
1,55
Fe
1,83
Co
1,88
Ni
1,91
Cu
1,90
Zn
1,65
Ga
1,81
Ge
2,01
As
2,18
Se
2,55
Br
2,96
Kr
3,00
5 Rb
0,82
Sr
0,95
Y
1,22
Zr
1,33
Nb
1,6
Mo
2,16
Tc
1,9
Ru
2,2
Rh
2,28
Pd
2,20
Ag
1,93
Cd
1,69
In
1,78
Sn
1,96
Sb
2,05
Te
2,1
I
2,66
Xe
2,60
6 Cs
0,79
Ba
0,89
*
 
Hf
1,3
Ta
1,5
W
2,36
Re
1,9
Os
2,2
Ir
2,20
Pt
2,28
Au
2,54
Hg
2,00
Tl
1,62
Pb
2,33
Bi
2,02
Po
2,0
At
2,2
Rn
2,2
7 Fr

0,7

Ra
0,9
**
 
Rf
 
Db
 
Sg
 
Bh
 
Hs
 
Mt
 
Ds
 
Rg
 
Cn
 
Nh
 
Fl
 
Mc
 
Lv
 
Ts
 
Og
 
 
Лантаноиды *
 
La
1,1
Ce
1,12
Pr
1,13
Nd
1,14
Pm
1,13
Sm
1,17
Eu
1,2
Gd
1,2
Tb
1,1
Dy
1,22
Ho
1,23
Er
1,24
Tm
1,25
Yb
1,1
Lu
1,27
Актиноиды **
 
Ac
1,1
Th
1,3
Pa
1,5
U
1,38
Np
1,36
Pu
1,28
Am
1,13
Cm
1,28
Bk
1,3
Cf
1,3
Es
1,3
Fm
1,3
Md
1,3
No
1,3
Lr
1,291
 

Периодический закон

Существуют две формулировки периодического закона химических элементов: классическая и современная.

Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.

Групповая электроотрицательность

В органической химии электроотрицательность больше связана с различными функциональными группами, чем с отдельными атомами. Термины групповая электроотрицательность и электроотрицательность заместителей используются как синонимы. Однако принято различать индукционный эффект и резонансный эффект , которые можно описать как σ- и π-электроотрицательности соответственно. Существует ряд линейных соотношений свободной энергии , которые использовались для количественной оценки этих эффектов, из которых уравнение Хаммета является наиболее известным. Параметры Кабачника — это групповые значения электроотрицательности для использования в химии фосфорорганических соединений .

Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность (ЭО)  — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s2 2p5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX) позволит судить о типе химической связи. Если величина Δ X = 0  –  связь ковалентная неполярная.

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной, например: связь H—F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными. Например: связь Na—Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

 Степень окисления

Степень окисления (СО) — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

При образовании ионной связи происходит переход электрона от менее электроотрицательного атома к более электроотрицательному, атомы теряет свою электронейтральность, превращается в ионы. возникают целочисленные заряды.

При образовании ковалентной полярной связи электрон переходит не полностью, а частично, поэтому возникают частичные заряды (на рисунке ниже HCl).

Представим, что электрон перешел полностью от атома водорода к хлору, и на водороде возник целый положительный заряд +1, а на хлоре -1. такие условные заряды и называют степенью окисления.

У металлов главных подгрупп – одна характерная СО, у неметаллов, как правило, наблюдается разброс СО.

Поэтому неметаллы образуют большое количество соединений и обладают более «разнообразными» свойствами, по сравнению с металлами.

Примеры определения степени окисления

Определим степени окисления хлора в соединениях:

Те правила, которые мы рассмотрели не всегда позволяют рассчитать СО всех элементов, как например в данной молекуле аминопропана.

Здесь удобно пользоваться следующим приемом:

1)Изображаем структурную формулу молекулы, черточка – это связь, пара электронов.

2) Черточку превращаем в стрелку, направленную к  более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть – нет перехода электронов.

3) Считаем сколько электронов «пришло» и «ушло».

Например, посчитаем заряд первого атома углерода. Три стрелки направленны к атому, значит, 3 электрона пришло, заряд -3.

Второй атом углерода: водород отдал ему электрон, а азот забрал один электрон. Заряд не поменялся, равен нулю. И т.д.

Валентность

Вале́нтность (от лат. valēns «имеющий силу») — способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью  понимается способность  атомов к образованию определённого числа ковалентных связей.  Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е.

его валентность будет равна n + m. При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого»  состояния.

Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH)42-, BF4— и NH4+), фосфора — 5 (PCl5), серы — 6 (H2SO4), хлора — 7 (Cl2O7).

В азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4, т.к имеет только 4 орбитали на внешнем уровне (а связь можно рассматривать как перекрывание орбиталей). И вообще, любой элемент второго периода по этой же причине не может иметь валентность большую 4.

Ещё несколько «коварных» вопросов, в которых часто делают ошибки.

Смысл понятия

Электроотрицательность химических элементов представляет собой способность атома вещества притягивать к себе электроны других атомов в сложных соединениях. Впервые это понятие ввел в начале XX столетия американский химик Лайнус Полинг. Простые элементы можно разделить на две большие группы в соответствии с их химическими и физическими свойствами:

  • неметаллы;
  • металлы.

Вещества из первой группы могут выступать в роли восстановителя либо окислителя в зависимости от показателя электроотрицательности элемента. Чем он выше, тем активнее вещество проявляет свойства окислителя.

Таким образом, необходимо разобраться с двумя новыми понятиями:

  • Окислитель. Это реагент, который во время окислительно-восстановительной реакции принимает электроны.
  • Восстановитель. Так называется вещество, которое может отдавать негативно заряженные частицы во время окислительно-восстановительной реакции.

Полингом была составлена специальная шкала электроотрицательности. Максимальной электронегативностию обладает фтор — 4. Минимальный электроотрицательный показатель у франция, и он равен 0,7.

Как определить

Свойства элементов притягивать или отдавать электроны можно определить по ряду электроотрицательности химических элементов. В соответствии со шкалой элементы со значением более двух являются окислителями и проявляют свойства типичного неметалла.

Номер элемента

Элемент

Символ

Электроотрицательность

87

Франций

Fr

0,79

55

Цезий

Cs

0,79

19

Калий

K

0,82

37

Рубидий

Rb

0,82

56

Барий

Ba

0,89

88

Радий

Ra

0,9

11

Натрий

Na

0,93

38

Стронций

Sr

0,95

3

Литий

Li

0,98

20

Кальций

Ca

1,0

57

Лантан

La

1,1

89

Актиний

Ac

1,1

70

Иттербий

Yb

1,1

58

Церий

Ce

1,12

59

Празеодим

Pr

1,13

61

Прометей

Pm

1,13

95

Америций

Am

1,13

60

Неодим

Nd

1,14

62

Самарий

Sm

1,17

64

Гадолиний

Gd

1,2

66

Диспрозий

Dy

1,22

39

Иттрий

Y

1,22

68

Эрбий

Er

1,24

69

Тулий

Tm

1,25

71

Лютеций

Lu

1,27

96

Кюрий

Cm

1,28

94

Плутоний

Pu

1,28

90

Торий

Th

1,3

97

Берклий

Bk

1,3

98

Калифорний

Cf

1,3

99

Эйнштейний

Es

1,3

100

Фермий

Fm

1,3

101

Менделевий

Md

1,3

102

Нобелий

No

1,3

12

Магний

Mg

1,31

40

Цирконий

Zr

1,33

93

Нептуний

Np

1,36

21

Скандий

Sc

1,36

92

Уран

U

1,38

73

Тантал

Ta

1,5

91

Протактиний

Pa

1,5

22

Титан

Ti

1,54

25

Марганец

Mn

1,55

4

Бериллий

Be

1,57

41

Ниобий

Nb

1,6

13

Алюминий

Al

1,61

81

Талий

Tl

1,62

30

Цинк

Zn

1,65

23

Ванадий

V

1,63

24

Хром

Cr

1,66

48

Кадмий

Cd

1,69

49

Индий

In

1,78

31

Галлий

Ga

1,81

26

Железо

Fe

1,83

82

Свинец

Pb

1,87

27

Кобальт

Co

1,88

29

Медь

Cu

1,9

75

Рений

Re

1,9

14

Кремний

Si

1,9

43

Технеций

Tc

1,9

28

Никель

Ni

1,91

47

Серебро

Ag

1,93

50

Олово

Sn

1,96

80

Ртуть

Hg

2

84

Полоний

Po

2

83

Висмут

Bi

2,02

5

Бор

B

2,04

51

Сурьма

Sb

2,05

42

Молибден

Mo

2,16

33

Мышьяк

As

2,18

15

Фосфор

P

2,19

1

Водород

H

2,2

77

Иридий

Ir

2,2

86

Радон

Rn

2,2

85

Астат

At

2,2

44

Рутений

Ru

2,2

46

Палладий

Pd

2,2

76

Осмий

Os

2,2

78

Платина

Pt

2,28

45

Родий

Rh

2,28

74

Вольфрам

W

2,36

79

Золото

Au

2,54

6

Углерод

C

2,55

34

Селен

Se

2,55

16

Сера

S

2,58

54

Ксенон

Xe

2,6

53

Йод

I

2,66

36

Криптон

Kr

2,96

7

Азот

N

3,04

17

Хлор

Cl

3,16

8

Кислород

O

3,44

9

Фтор

F

3,98

Вещества с электроотрицательностью два и меньше являются восстановителями и проявляют металлические свойства. Переходные металлы, обладающие переменной степенью окисления и относящиеся к побочным подгруппам таблицы Менделеева, имеют значения электроотрицательности в пределах 1,5-2. Ярко выраженными свойствами восстановителя обладают элементы с электроотрицательностью равной или меньше одного. Это типичные металлы.

В ряде электроотрицательности металлические и восстановительные свойства увеличиваются справа налево, а окислительные и неметаллические свойства – слева направо.

Рис. 2. Ряд электроотрицательности.

Помимо шкалы Полинга узнать, насколько выражены окислительные или восстановительные свойства элемента можно с помощью периодической таблицы Менделеева. Электроотрицательность увеличивается в периодах слева направо с увеличением порядкового номера. В группах значение электроотрицательности уменьшается сверху вниз.

Рис. 3. Таблица Менделеева.

Что мы узнали?

Электроотрицательность показывает способность элементов отдавать или принимать электроны. Эта характеристика помогает понять, насколько выражены свойства окислителя (неметалла) или восстановителя (металла) у конкретного элемента. Для удобства Полингом была разработана шкала электроотрицательности. Согласно шкале максимальными окислительными свойствами обладает фтор, минимальными – франций. В периодической таблице свойства металлов увеличиваются справа налево и сверху вниз.

Тест по теме

  1. Вопрос 1 из 5

    Какие свойства проявляют металлы?

    • Окислительные – отдают электроны
    • Окислительные – принимают электроны
    • Восстановительные – отдают электроны
    • Восстановительные – принимают электроны

Начать тест(новая вкладка)

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий