Содержание
- 1 Группы элементов с похожими свойствами
- 2 Лантаноиды и актиноиды.
- 3 Таблица Менделеева — краткое описание
- 4 Длиннопериодная форма таблицы Менделеева
- 5 Инертные (благородные) газы
- 6 Дальнейшая работа
- 7 Таблица Менделеева с выделением главных и побочных подгрупп
- 8 Периодическая таблица.
- 9 Основная разница — Менделеев против современной периодической таблицы
- 10 Вспышки сверхновых и дело рук человеческих
- 11 Валентные элементы в группах
- 12 Почему в таблице Мендлеева были пустые клетки?
- 13 Определение атомной структуры
- 14 Кто вообще такой Менделеев?
- 15 Мифы и факты о создании периодической таблицы
Группы элементов с похожими свойствами
Группа — это вертикальная колонка в периодической таблице, определяющая основные физико-химические свойства элементов. Вещества, принадлежащие к одной и той же группе, обладают похожими химическими особенностями и демонстрируют одинаковую закономерность в изменении своих свойств по мере увеличения атомного числа.
Всем группам (колонкам таблицы) присваиваются номера от 1 до 18 — слева направо (от щелочных металлов к благородным газам). Такая система вступила в силу в 1988 году по инициативе ИЮПАК. Все прежние названия групп, которые использовали в разных странах, больше не употребляются.
Элементы, которые относятся к одной группе, показывают следующие закономерности по направлению сверху вниз:
- Возрастает радиус атома элементов в рамках одной группы.
- Усиливаются металлические свойства элементов и ослабевают неметаллические.
- Падает электроотрицательность.
Цветовое определение групп
Вещества в каждой группе делятся на те, которые находятся в главной подгруппе и те, которые входят в побочную подгруппу. В таблице составляющие побочной группы выделяются синим цветом, к ней относятся элементы только больших периодов (начинаются с четвертого периода). В главную подгруппу могут входить элементы и малых, и больших периодов (начинаются с первого или второго периодов).
Лантаноиды и актиноиды.
Последовательное заполнение электронами 6s-, 4f-, 5d- и 6p-орбиталей у элементов 6-го (т.е. третьего длинного) периода приводит к появлению новых 32 электронов, которые формируют структуру последнего элемента этого периода – радона. Начиная с 57 элемента, лантана, последовательно располагаются 14 элементов, мало отличающихся по химическим свойствам. Они образуют серию лантаноидов, или редкоземельных элементов, у которых застраивается 4f-оболочка, содержащая 14 электронов.
Серия актиноидов, которая располагается за актинием (атомный номер 89), характеризуется застройкой 5f-оболочки; она также включает 14 элементов, весьма близких по химическим свойствам. Элемент с атомным номером 104 (резерфордий), следующий за последним из актиноидов, уже отличается по химическим свойствам: он является аналогом гафния. Для элементов за резерфордием приняты названия: 105 – дубний (Db), 106 – сиборгий (Sg), 107 – борий (Bh), 108 – хассий (Hs), 109 – мейтнерий (Mt).
Таблица Менделеева — краткое описание
Таблица Менделеева — это графическое выражение периодического закона, который открыл русский ученый Д.И. Менделеев в 1869 году. Периодическая система представляет собой классификацию химических элементов, которая основана на зависимости свойств химических элементов от заряда их атомного числа. Первоначальный вариант предполагал зависимость свойств веществ от их атомной массы.
Существуют три формата таблицы Менделеева:
- короткий (короткопериодный);
- длинный (длиннопериодный);
- сверхдлинный.
Международным союзом теоретической и прикладной химии (ИЮПАК) в качестве основного утвержден длинный вариант таблицы Менделеева, а короткий вариант официально отменен в 1989 году.
Пустые ячейки в таблице
Создав периодическую таблицу в 1869 году на базе уже известных миру 63-х химических элементов, Менделеев предсказал открытие новых и оставил для них пустые ячейки в таблице. Русский ученый оказался прав. Гипотеза Менделеева в скором времени была подтверждена открытиями других ученых: в 1875 году был открыт галлий, в 1879 — скандий, в 1886 — германий. На 2020 год в таблицу собраны 118 известных элементов. Последние из них открыты в 2016 году: ученые обнаружили нихоний, московий, теннессин и оганесон.
Длиннопериодная форма таблицы Менделеева
Именно нечто подобное и было создано Дмитрием Ивановичем Менделеевым. Именно такой вариант таблицы наиболее наглядно иллюстрирует периодический закон. К сожалению, у длиннопериодной формы есть один недостаток: таблица занимает слишком много места. Именно поэтому многие отдают предпочтение короткопериодной форме.
  | IA | IIA | IIIB |   | IVB | VB | VIB | VIIB |   VIIIB | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | |||||||||||||||
1 | 1 H |   | 1H | 2He | ||||||||||||||||||||||||||||
2 | 3Li | 4Be |   | 5B | 6C | 7N | 😯 | 9F | 10Ne | |||||||||||||||||||||||
3 | 11Na | 12Mg |   | 13Al | 14Si | 15P | 16S | 17Cl | 18Ar | |||||||||||||||||||||||
4 | 19K | 20Ca | 21Sc |   | 22Ti | 23V | 24Cr | 25Mn | 26Fe | 27Co | 28Ni | 29Cu | 30Zn | 31Ga | 32Ge | 33As | 34Se | 35Br | 36Kr | |||||||||||||
5 | 37Rb | 38Sr | 39Y |   | 40Zr | 41Nb | 42Mo | 43Tc | 44Ru | 45Rh | 46Pd | 47Ag | 48Cd | 49In | 50Sn | 51Sb | 52Te | 53I | 54Xe | |||||||||||||
6 | 55Cs | 56Ba | 57La | 58Ce | 59Pr | 60Nd | 61Pm | 62Sm | 63Eu | 64Gd | 65Tb | 66Dy | 67Ho | 68Er | 69Tm | 70Yb | 71Lu | 72Hf | 73Ta | 74W | 75Re | 76Os | 77Ir | 78Pt | 79Au | 80Hg | 81Tl | 82Pb | 83Bi | 84Po | 85At | 86Rn |
7 | 87Fr | 88Ra | 89Ac | 90Th | 91Pa | 92U | 93Np | 94Pu | 95Am | 96Cm | 97Bk | 98Cf | 99Es | 100Fm | 101Md | 102No | 103Lr | 104Ku | 105Ns | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 |
А>
Инертные (благородные) газы
Группа VIII(18). Атомы элементов этой группы имеют полностью «укомплектованный» внешний электронный слой. Поэтому им «не надо» принимать электроны. И отдавать их они «не хотят». Отсюда — элементы этой группы очень «неохотно» вступают в химические реакции. Долгое время считалось, что они вообще не вступают в реакции (отсюда и название «инертный», т.е. «бездействующий»). Но химик Нейл Барлетт открыл, что некоторые из этих газов при определенных условиях все же могут вступать в реакции с другими элементами.
Электронные конфигурации:
- Ne — 1s22s22p6;
- Ar — 1s22s22p63s23p6;
- Kr — 1s22s22p63s23p64s23d104p6
Подробнее об инертных (благородных) газах см. Атомы элементов 0 группы: общая характеристика…
Дальнейшая работа
В период с 1869 по 1871 годы Менделеев развивал идеи периодичности, к которым склонялось научное сообщество. И одним из важных этапов данного процесса стало понимание того, что любой элемент в системе должно располагать, исходя из совокупности его свойств в сравнении со свойствами остальных элементов. Основываясь на этом, а также опираясь на результаты исследований в изменении стеклообразующих оксидов, химику удалось внести поправки в значения атомных масс некоторых элементов, среди которых были уран, индий, бериллий и другие.
Пустые клетки, остававшиеся в таблице, Менделеев, конечно же, хотел скорее заполнить, и в 1870 году предсказал, что в скором времени будут открыты неизвестные науке химические элементы, атомные массы и свойства которых он сумел вычислить. Первыми из них стали галлий (открыт в 1875 году), скандий (открыт в 1879 году) и германий (открыт в 1885 году). Затем прогнозы продолжили реализовываться, и были открыты ещё восемь новых элементов, среди которых: полоний (1898 год), рений (1925 год), технеций (1937 год), франций (1939 год) и астат (1942-1943 годы). Кстати, в 1900 году Д. И. Менделеев и шотландский химик Уильям Рамзай пришли к мнению, что в таблицу должны быть включены и элементы нулевой группы – до 1962 года они назывались инертными, а после – благородными газами.
Таблица Менделеева с выделением главных и побочных подгрупп
Элементы главных подгрупп обозначены фиолетовым цветом, побочных — серым. Я напоминаю, что свойства элементов, находящихся в одной группе, но в разных подгруппах, отличаются достаточно сильно.
Например, натрий, калий, медь и серебро находятся в I группе: Na и K — в главной подгруппе, Cu и Ag — в побочной. Свойства натрия и калия весьма похожи — активные металлы, бурно реагирующие с водой, легко окисляющиеся на воздухе, имеют низкие температуры плавления и кипения. Все это сильно отличается от свойств меди и серебра: инертные металлы, которые не реагируют не только с водой, но и с большинством кислот, на воздухе устойчивы, температуры плавления и кипения достаточно высоки.
Еще ярче отличия заметны, например, в VI группе. Кислород, сера, селен (главная подгруппа) — типичные неметаллы, а хром, молибден и вольфрам, находящиеся в побочной подгруппе, относятся к металлам.
Все проблемы исчезают, если вы используете таблицы Менделеева: «мешанина» из элементов главных и побочных подгрупп исчезает, и мы начинаем отчетливо видеть логику периодического закона.
Периоды | Группы элементов | |||||||||
I | II | III | IV | V | VI | VII | VIII | |||
1 |
1 |
1 |
2 |
|||||||
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
3 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
||
4 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
|||
5 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
|||
6 |
55 |
56 |
57 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
|||
7 |
87 |
88 |
89 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
Высшие оксиды | R2O | RO | R2O3 | RO2 | R2O5 | RO3 | R2O7 | RO4 | ||
Водородные соед. | RH4 | RH3 | H2R | HR |
*Лантаноиды |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
^Актиноиды |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
Периодическая таблица.
Менделеев расположил элементы в порядке увеличения их атомного веса и в 1869 предложил таблицу размещения семейств элементов (табл. 1). Модифицированная форма таблицы (табл. 2), в которой семейства (группы) элементов расположены в колонках, была предложена им в 1871 и существует до настоящего времени. Наряду с ней получила распространение развернутая форма таблицы. См. также ХИМИЯ; ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ.
Таблица 1. ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ЭЛЕМЕНТОВ, ОПУБЛИКОВАННАЯ МЕНДЕЛЕЕВЫМ В 1869 (первая версия) | |||||
Ti = 50 | Zr = 90 | ? = 180 | |||
V = 51 | Nb = 94 | Ta = 182 | |||
Cr = 52 | Mo = 96 | W = 186 | |||
Mn = 55 | Rh = 104,4 | Pt = 197,4 | |||
Fe = 56 | Ru = 104,4 | Ir = 198 | |||
Ni = | Co = 59 | Pd = 106,6 | Os = 199 | ||
H = 1 | Cu = 63,4 | Ag = 108 | Hg = 200 | ||
Be = 9,4 | Mg = 24 | Zn = 65,2 | Cd = 112 | ||
B = 11 | Al = 27,4 | ? = 68 | Ur = 116 | Au = 197? | |
C = 12 | Si = 28 | ? = 70 | Sn = 118 | ||
N = 14 | P = 31 | As = 75 | Sb = 122 | Bi = 210? | |
O = 16 | S = 32 | Se = 79,4 | Te = 128? | ||
F = 19 | Cl = 35,5 | Br = 80 | I = 127 | ||
Li = 7 | Na = 23 | K = 39 | Rb = 85,4 | Cs = 133 | Tl = 204 |
Ca = 40 | Sr = 87,6 | Ba = 137 | Pb = 207 | ||
? = 45 | Ce = 92 | ||||
?Er = 56 | La = 94 | ||||
?Yt = 60 | Di = 95 | ||||
?In = 75,6 | Th = 118 |
Таблица 2. МОДИФИЦИРОВАННАЯ ТАБЛИЦА МЕНДЕЛЕЕВА | ||||||||||||||
Группа | I | II | III | IV | V | VI | VII | VIII | ||||||
Формула оксида или гидрида Подгруппа | R2O
А В |
RO
А В |
R2O3 В А |
RH4 RO2 В А |
RH3 R2O5 В А |
RH2 RO3 В А |
RH R2O7 В А |
|||||||
Период 1 | 1 H Водород 1,0079 | 2 He Гелий 4,0026 | ||||||||||||
Период 2 | 3 Li Литий 6,941 | 4 Be Бериллий 9,0122 | 5 B Бор 10,81 | 6 C Углерод 12,011 | 7 N Азот 14,0067 | 8 O Кислород 15,9994 | 9 F Фтор 18,9984 | 10 Ne Неон 20,179 | ||||||
Период 3 | 11 Na Натрий 22,9898 | 12 Mg Магний 24,305 | 13 Al Алюминий 26,9815 | 14 Si Кремний 28,0855 | 15 P Фосфор 30,9738 | 16 S Сера 32,06 | 17 Cl Хлор 35,453 | 18 Ar Аргон 39,948 | ||||||
Период 4 | 19 K Калий 39,0983 29 Cu Медь 63,546 | 20 Ca Кальций 40,08 30 Zn Цинк 65,39 | 21 Sc Скандий 44,9559 31 Ga Галлий 69,72 | 22 Ti Титан 47,88 32 Ge Германий 72,59 | 23 V Ванадий 50,9415 33 As Мышьяк 74,9216 | 24 Cr Хром 51,996 34 Se Селен 78,96 | 25 Mn Марганец 54,9380 35 Br Бром 79,904 | 26 Fe Железо 55,847 | 27 Co Кобальт 58,9332 | 28 Ni Никель 58,69 |
36 Kr Криптон 83,80 |
|||
Период 5 | 37 Rb Рубидий 85,4678 47 Ag Серебро 107,868 | 38 Sr Стронций 87,62 48 Cd Кадмий 112,41 | 39 Y Иттрий 88,9059 49 In Индий 114,82 | 40 Zr Цирконий 91,22 50 Sn Олово 118,69 | 41 Nb Ниобий 92,9064 51 Sb Сурьма 121,75 | 42 Mo Молибден 95,94 52 Te Теллур 127,60 | 43 Tc Технеций 53 I Иод 126,9044 | 44 Ru Рутений 101,07 | 45 Rh Родий 102,9055 | 46 Pd Палладий 106,4 |
54 Xe Ксенон 131,29 |
|||
Период 6 | 55 Cs Цезий 132,9054 79 Au Золото 196,9665 | 56 Ba Барий 137,33 80 Hg Ртуть 200,59 | 57* La Лантан 138,9055 81 Tl Таллий 204,38 | 72 Hf Гафний 178,49 82 Pb Свинец 207,21 | 73 Ta Тантал 180,9479 83 Bi Висмут 208,9804 | 74 W Вольфрам 183,85 84 Po Полоний | 75 Re Рений 186,207 85 At Астат | 76 Os Осмий 190,2 | 77 Ir Иридий 192,2 | 78 Pt Платина 195,08 |
86 Rn Радон |
|||
Период 7 | 87 Fr Франций | 88 Ra Радий 226,0254 | 89** Ac Актиний 227,028 | 104 | 105 | 106 | 107 | 108 | 109 | |||||
* | 58 Ce 140,12 | 59 Pr 140,9077 | 60 Nd 144,24 | 61 Pm | 62 Sm 150,36 | 63 Eu 151,96 | 64 Gd 157,25 | 65 Tb 158,9254 | 66 Dy 162,50 | 67 Ho 164,9304 | 68 Er 167,26 | 69 Tm 168,9342 | 70 Yb 173,04 | 71 Lu 174,967 |
** | 90 Th 232,0381 | 91 Pa 231,0359 | 92 U 238,0289 | 93 Np 237,0482 | 94 Pu | 95 Am | 96 Cm | 97 Bk | 98 Cf | 99 Es | 100 Fm | 101 Md | 102 No | 103 Lr |
*Лантаноиды: церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций. **Актиноиды: торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий.Примечание. Атомный номер указан над символом элемента, атомная масса указана под символом элемента. Величина в скобках – массовое число наиболее долгоживущего изотопа. |
Основная разница — Менделеев против современной периодической таблицы
Периодическая таблица — это расположение химических элементов в соответствии с их химическими и физическими свойствами. Современная периодическая таблица была создана после серии различных версий периодической таблицы. Российский химик / профессор Дмитрий Менделеев первым предложил структуру периодической таблицы со столбцами и строками. Эта особенность является основным строительным блоком для современной периодической таблицы. Менделеев смог определить, что химические свойства элементов стали повторяться каждый раз после определенного количества элементов. Следовательно, термин «периоды» вошел в употребление, напоминая этот характер повторения. Столбцы в периодической таблице называются группами, и они группируют элементы с похожими свойствами. Строки в периодической таблице называются периодами, и они представляют наборы элементов, которые повторяются из-за наличия аналогичных свойств. Основное различие между Менделеевым и современной периодической таблицей состоит в том, что периодическая таблица Менделеева упорядочивает элементы на основе их атомной массы, тогда как современная периодическая таблица упорядочивает элементы на основе их атомного номера.
Вспышки сверхновых и дело рук человеческих
Следует упомянуть еще одно явление, важное с точки зрения нуклеосинтеза, — вспышки термоядерных сверхновых. Считается, что эти взрывы (в отличие от сверхновых с коллапсом ядра) происходят не на одиночных массивных звездах, а в двойных системах, в которых по крайней мере один из компонентов — белый карлик
Как уже говорилось, белый карлик представляет собой компактный остаток звезды малой или промежуточной массы. Он удерживается от коллапса давлением вырожденного электронного газа. Как показывают расчеты, равновесие между гравитацией и давлением в этом случае возможно лишь при условии, что масса карлика не превышает 1,4M☉. Естественно, в момент образования масса белого карлика не превосходит критического значения, однако, если позже она по каким-то причинам увеличится, равновесие будет утрачено и карлик разрушится колоссальным термоядерным взрывом.
Увеличение массы может вызываться как минимум двумя причинами, и обе требуют, чтобы белый карлик был членом двойной системы. Во-первых, он может нарастить массу за счет перетекания на него вещества со второго компонента системы — нормальной звезды, которая все еще проходит завершающие этапы эволюции. Во-вторых, объект с массой больше критической может сформироваться в результате слияния двух белых карликов. В этом случае нужна состоящая из них двойная система. Она так же, как и пара нейтронных звезд, излучает гравитационные волны, что приводит к сближению компонентов. И в том, и в другом случае происходит взрыв, стимулирующий быстрое протекание термоядерных реакций, также заканчивающихся синтезом железа. Однако если в массивной звезде большая часть железа остается в ядре, то при взрыве белого карлика все синтезированные элементы разлетаются по ближайшим галактическим окрестностям. Поэтому главным источником элементов железного пика служат, вероятно, не массивные звезды, а взрывающиеся белые карлики.
Итак, за появление практически всех элементов Периодической таблицы Д. И. Менделеева отвечают различные этапы звездной эволюции, в финале которой эти элементы либо посредством спокойного сброса оболочки звездами промежуточных масс, либо в результате взрыва массивных звезд попадают в межзвездную среду (рис. 8). Из легких элементов нам осталось разобраться только с бериллием и бором. Эти элементы формируются в межзвездной среде в реакциях скалывания, т.е. при разрушении более крупных ядер (преимущественно кислорода и углерода) в результате столкновений с частицами космических лучей. Такие реакции порождают и ядра других элементов, но только для бериллия, бора, а также легкого изотопа лития 6Li они являются основным источником.
Известные нам естественные процессы синтеза атомных ядер заканчиваются, вероятно, плутонием-239, который образуется в урановых рудах в результате захвата нейтрона ядром урана-238 и последующего бета-распада. Нельзя исключить наличия там же нескольких атомов и более тяжелых элементов, однако в целом история природного синтеза значимых количеств атомных ядер заканчивается ураном. Чтобы создать условия для появления еще более массивных атомных ядер, Природе пришлось пойти наиболее замысловатым путем, а именно породить цивилизацию на ничем не примечательной планете у ничем не примечательной звезды.
Литература . Asplund M., Grevesse N., Sauval A. J., Scott P. The Chemical Composition of the Sun // Ann. Rev. Astron. Astrophys. 2009; 47: 481–522. DOI: org/10.1146/annurev.astro.46.060407.145222.. Alpher R. A., Bethe H., Gamow G. The Origin of Chemical Elements // Phys. Rev. 1948; 73: 803.. Cyburt R. H., Fields B. D., Olive K. A., Yeh T.-H. Big bang nucleosynthesis: Present status // Rev. Mod. Phys. 2016; 88(1): 015004-1. DOI: org/10.1103/RevModPhys.88.015004.. Burbidge E. M., Burbidge G. R., Fowler W. A., Hoyle F. Synthesis of the Elements in Stars // Rev. Mod. Phys. 1957; 29: 547.. Käppeler F., Gallino R., Bisterzo S., Aoki W. The s-process: Nuclear physics, stellar models, and observations // Rev. Mod. Phys. 2011; 83(1): 157.. Thielemann F. K., Eichler M., Panov I. V., Wehmeyer B. Neutron Star Mergers and Nucleosynthesis of Heavy Elements // Annu. Rev. Nucl. Part. Sci. 2017; 67(1): 253–274. DOI: 10.1146/annurev-nucl-101916-123246.. Smartt S. J., Chen T.-W., Jerkstrand A. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source // Nature. 2017; 551: 75. DOI: 10.1038/nature24303.
Фотосфера — видимый слой Солнца, глубиной 200–300 км. — Примеч. ред.
Валентные элементы в группах
Нетрудно заметить, что внутри каждой группы элементы похожи друг на друга своими валентными электронами (электроны s и p-орбиталей, расположенных на внешнем энергетическом уровне).
У щелочных металлов — по 1 валентному электрону:
- Li — 1s22s1;
- Na — 1s22s22p63s1;
- K — 1s22s22p63s23p64s1
У щелочноземельных металлов — по 2 валентных электрона:
- Be — 1s22s2;
- Mg — 1s22s22p63s2;
- Ca — 1s22s22p63s23p64s2
У галогенов — по 7 валентных электронов:
- F — 1s22s22p5;
- Cl — 1s22s22p63s23p5;
- Br — 1s22s22p63s23p64s23d104p5
У инертных газов — по 8 валентных электронов:
- Ne — 1s22s22p6;
- Ar — 1s22s22p63s23p6;
- Kr — 1s22s22p63s23p64s23d104p6
Римский номер столбца группы — это количество валентных электронов у всех элементов данной группы. |
Дополнительную информацию см. в статье Валентность и в Таблице электронных конфигураций атомов химических элементов по периодам.
Обратим теперь свое внимание на элементы, расположенные в группах с символов В. Они расположены в центре периодической таблицы и называются переходными металлами
Отличительной особенностью этих элементов является присутствие в атомах электронов, заполняющих d-орбитали:
- Sc — 1s22s22p63s23p64s23d1;
- Ti — 1s22s22p63s23p64s23d2
Отдельно от основной таблицы расположены лантаноиды и актиноиды — это, так называемые, внутренние переходные металлы. В атомах этих элементов электроны заполняют f-орбитали:
- Ce — 1s22s22p63s23p64s23d104p64d105s25p64f15d16s2;
- Th — 1s22s22p63s23p64s23d104p64d105s25p64f145d106s26p66d27s2
Подробнее см. Атомы переходных элементов (металлов)…
Почему в таблице Мендлеева были пустые клетки?
Памятник Менделееву в Тобольске пора пополнять новыми элементами
Значимость теории Менделеева, спустя некоторое время ставшей аксиомой современной науки, проявилась довольно быстро. Дело в том, что до него элементы упорядочивали в сплошную линию.
Но уже первая версия таблицы Менделеева оставляла пустыми несколько клеток под новые элементы: пустые места должны были занять так называемые эка-элементы, похожие на соседей. Менделееву даже удалось с поразительной точностью предсказать целый ряд их физических и химических свойств.
Соответствующие экабор, экаалюминий, экасилиций, экамарганец были получены экспериментально, получив уже в наше время собственные имена скандий, галлий, германий, технеций. Практика эка-элементов сохраняется и по сей день.
Для известных в середине XIX века бериллия, индия, урана, тория, церия, титана, иттрия Менделееву пришлось исправить атомные веса, чтобы разместить их в таблице согласно химическим свойствам, на что не решился ни один другой исследователь. И это тоже оказалось верным.
Один из первых вариантов таблицы Менделеева с предсказанными элементами
Абсолютность таблицы однажды подвела исследователей: инертным газам в первое время не нашлось в ней места, поэтому их существование активно отвергалось.
В дальнейшем периодичность позволила найти класс несуществующих (или чрезвычайно редких) в природе при обычных состояниях трансурановых элементов.
Определение атомной структуры
Менделеевская периодическая таблица не поддерживает концепцию атомной структуры.
Современная периодическая таблица подтверждает этот факт, группируя элементы таким образом, что их электронная конфигурация может быть легко определена.
Изображение предоставлено:
«Mendelejevs periodiska system 1871», автор оригинальной статьи, был Den fjättrade ankan в sv.wikipedia — Källa: Дмитрий Иванович Менделеев (1834 — 1907). (Общественное достояние) через Commons
«Периодическая таблица (многоатомная)» от DePiep — собственная работа — «вдохновлен» бесплатными версиями в Википедии / Commons. (CC BY-SA 3.0) через Commons
Кто вообще такой Менделеев?
“Трёхногий” портрет отца мировой химии
Удивительно, что именно Менделеев стал родоначальником Периодического закона, ставшего основой периодической системы химических элементов.
Ставший 17-м ребенком директора Тобольской гимназии, он не проявлял призвания к какой-либо науке вплоть до старших курсов гимназии, однажды оставшись на второй год. Со временем ему удалось подтянуться и закончить Главный педагогический институт Петербурга с золотой медалью.
Став учителем в Одессе, он проявлял множество странных, нехарактерных для интеллигента того времени привычек и увлечений. Одним из них было увлечение кожевенным делом и шитьё: Менделеев самостоятельно переплетал книги, делал чемоданы и шил одежду для себя самого.
Пороховые заводы Менделеева
В числе других его увлечений оказалось воздухоплавание, экономика и футурология. Попутно он создал основы современной метрологии, разработал первый ледокол. Занятие естественными науками приводило ученого то к созданию русского бездымного пороха, то к попытке разработки собственной теории эфира для объяснения свойств капиллярных сосудов.
Однако водка, несмотря на устоявшееся мнение, никак не связана с именем Менделеева. Водка родилась задолго до защиты диссертации «О соединении спирта с водой», посвященной на самом деле теории растворов (указал о необходимости учитывать химизм раствора), а не русскому национальному напитку.
Менделеева совершил первый метеорологический полет в России
Но все же главное его открытие — Периодический закон: сегодня его относят к одному из фундаментальных законов мироздания, поскольку она до сих по является аксиоматической, абсолютной.
Это противоречит самим законам науки. Однако, правота Менделеева подтверждается раз за разом. И многое мы видим прямо за экраном своего монитора.
Мифы и факты о создании периодической таблицы
Самым распространенным заблуждением в истории открытия таблицы Менделеева является то, что ученый увидел ее во сне. На самом деле сам Дмитрий Менделеев опроверг этот миф и заявил, что размышлял над периодическим законом на протяжении многих лет. Чтобы систематизировать химические элементы он выписывал каждый из них на отдельную карточку и многократно комбинировал их между собой, расставляя в ряды в зависимости от их схожих свойств.
Миф о «вещем» сне ученого можно объяснить тем, что Менделеев работал над систематизацией химических элементов сутками напролет, прерываясь на непродолжительный сон. Однако только упорный труд и природный талант ученого дал долгожданный результат и обеспечил Дмитрию Менделееву всемирную известность.
Многих учащихся в школе, а иногда и в университете, заставляютзаучивать или хотя бы примерно ориентироваться в таблице Менделеева. Для этого человек должен не только иметь хорошую память, но и логически мыслить, связывая элементы в отдельные группы и классы. Изучение таблицы легче всего дается тем людям, которые постоянно поддерживают мозг в тонусе, проходя тренинги на BrainApps.