Активные металлы

Тренировочные задания

1. Среди перечисленных химический элемент с максимальным радиусом атома — это

1) неон 2) алюминий 3) калий 4) кальций

2. Среди перечисленных химический элемент с минимальным радиусом атома — это

1) алюминий 2) бор 3) калий 4) неон

3. Наиболее ярко металлические свойства выражены у элемента

1) Rb 2) Li 3) Mg 4) Ca

4. Наиболее ярко неметаллические свойства выражены у элемента

1) F 2) S 3) O 4) N

5. Наибольшее число валентных электронов у элемента

1) фтор 2) водород 3) натрий 4) сера

6. Наименьшее число валентных электронов у элемента

1) кислород 2) кремний 3) водород 4) кальций

7. Металлические свойства элементов возрастают в ряду

1) Ba, Li, Cs, Mg 2) Al, Mg, Ca, K 3) Li, Cs, Mg, Ba 4) Na, Mg, Li, Al

8. Неметаллические свойства элементов ослабевают в ряду:

1) N, S, Br, Cl 2) O, S, Se, Te 3) Se, I, S, O 4) N, P, O, F

9. Химические элементы перечислены в порядке возрастания атомного радиуса в ряду

1) углерод, бериллий, магний 2) калий, магний, алюминий 3) хлор, натрий, фтор 4) азот, фосфор, фтор

10. Химические элементы перечислены в порядке убывания атомного радиуса в ряду

1) водород, бор, алюминий 2) углерод, кремний, калий 3) натрий, хлор, фтор 4) сера, кремний, магний

11. Кислотные свойства водородных соединений усиливаются в ряду

1) HI – PH3 – HCl – H2S 2) PH3 – H2S – HBr – HI 3) H2S – PH3 – HCl – SiH4 4) HI – HCl – H2S – PH3

12. Кислотные свойства водородных соединений ослабевают в ряду

1) HI – PH3 – HCl – H2S 2) PH3 – H2S – HBr – HI 3) H2S – PH3 – HCl – SiH4 4) HI – HBr – HCl – HF

13. Основные свойства соединений усиливаются в ряду

1) LiOH – KOH – RbOH 2) LiOH – KOH – Ca(OH)2 3) Ca(OH)2 – KOH – Mg(OH)2 4) LiOH – Ca(OH)2 – KOH

14. Основные свойства соединений ослабевают в ряду

1) LiOH – Ba(OH)2 – RbOH 2) LiOH – Ba(OH)2 – Ca(OH)2 3) Ca(OH)2 – KOH – Mg(OH)2 4) LiOH – Ca(OH)2 – KOH

15. Во втором периоде Периодической системы элементов Д.И. Менделеева с увеличением заряда ядра у химических элементов:

1) возрастает электроотрицательность 2) уменьшается заряд ядра 3) возрастает атомный радиус 4) возрастает степень окисления

16. Наиболее сильной кислотой, образованной элементом второго периода, является

1) угольная 2) азотная 3) фтороводородная 4) азотистая

17. Наиболее сильное основание образует химический элемент

1) магний 2) литий 3) алюминий 4) калий

18. Наиболее сильная бескислородная кислота соответствует элементу

1) селен 2) фтор 3) йод 4) сера

19. В ряду элементов Li → B → N → F

1) убывает атомный радиус 2) возрастают металлические свойства 3) уменьшается число протонов в атомном ядре 4) увеличивается число электронных слоёв

20. В ряду элементов Li → Na → K → Rb

1) убывает атомный радиус 2) ослабевают металлические свойства 3) уменьшается число протонов в атомном ядре 4) увеличивается число электронных слоёв

Электрохимический ряд напряжений металлов (ЭРН)

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H Cu Hg Ag Pt Au

Ряд напряжений металлов широко используется в неорганической химии. В частности, результаты многих реакций и даже возможность их осуществления зависят от положения некоторого металла в ЭРН. Обсудим этот вопрос подробнее.

Взаимодействие металлов с кислотами

Металлы, находящиеся в ряду напряжений левее водорода, реагируют с кислотами — неокислителями. Металлы, расположенные в ЭРН правее Н, взаимодействуют только с кислотами — окислителями (в частности, с HNO3 и концентрированной H2SO4).

Пример 1. Цинк расположен в ЭРН левее водорода, следовательно, способен реагировать практически со всеми кислотами:

Zn + 2HCl = ZnCl2 + H2

Zn + H2SO4 = ZnSO4 + H2

Пример 2. Медь находится в ЭРН правее Н; данный металл не реагирует с «обычными» кислотами (HCl, H3PO4, HBr, органические кислоты), однако вступает во взаимодействие с кислотами-окислителями (азотная, концентрированная серная):

Сu + 2HCl ≠

Cu + 4HNO3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O

Cu + 2H2SO4(конц.) = CuSO4 + SO2 + 2H2O

Обращаю внимание на важный момент: при взаимодействии металлов с кислотами-окислителями выделяется не водород, а некоторые другие соединения. Подробнее об этом можно почитать здесь!

Взаимодействие металлов с водой

Металлы, расположенные в ряду напряжений левее Mg, легко реагируют с водой уже при комнатной температуре с выделением водорода и образованием раствора щелочи.

Пример 3. Натрий, калий, кальций легко растворяются в воде с образованием раствора щелочи:

2Na + 2H2O = 2NaOH + H2

2K + 2H2O = 2KOH + H2

Ca + 2H2O = Ca(OH)2 + H2

Металлы, расположенные в ряду напряжений от водорода до магния (включительно), в ряде случаев взаимодействуют с водой, но реакции требуют специфических условий.

Кобальт, никель, олово, свинец практически не взаимодействуют с H2O не только при комнатной температуре, но и при нагревании.

Металлы, расположенные в правой части ЭРН (серебро, золото, платина) не реагируют с водой ни при каких условиях.

Взаимодействие металлов с водными растворами солей

Речь пойдет о реакциях следующего типа:

металл (*) + соль металла (**) = металл (**) + соль металла (*)

Хотелось бы подчеркнуть, что звездочки обозначают в данном случае не степень окисления, не валентность металла, а просто позволяют различить металл № 1 и металл № 2.

Для осуществления подобной реакции необходимо одновременное выполнение трех условий:

  1. соли, участвующие в процессе, должны растворяться в воде (это легко проверить, пользуясь таблицей растворимости);
  2. металл (*) должен находиться в ряду напряжений левее металла (**);
  3. металл (*) не должен реагировать с водой (что тоже легко проверяется по ЭРН).

Пример 4. Рассмотрим несколько реакций:

Zn + CuSO4 = ZnSO4 + Cu

Fe + CuS ≠

Pb + FeSO4 ≠

K + Ni(NO3)2 ≠

Первая реакция легко осуществима, все перечисленные выше условия выполнены: сульфат меди растворим в воде, цинк находится в ЭРН левее меди, Zn не реагирует с водой.

Вторая реакция невозможна, т. к. не выполнено первое условие (сульфид меди (II) практически не растворяется в воде).

Третья реакция неосуществима, поскольку свинец — менее активный металл, нежели железо (находится правее в ЭРН).

Наконец, четвертый процесс НЕ приведет к осаждению никеля, поскольку калий реагирует с водой; образовавшийся гидроксид калия может вступить в реакцию с раствором соли, но это уже совершенно другой процесс.

Процесс термического распада нитратов

Напомню, что нитраты — это соли азотной кислоты. Все нитраты разлагаются при нагревании, но вот состав продуктов разложения может быть разным. Состав определяется положением металла в ряду напряжений.

Нитраты металлов, расположенных в ЭРН левее магния, при нагревании образуют соответствующий нитрит и кислород:

2KNO3 = 2KNO2 + O2

В ходе термического разложения нитратов металлов, расположенных в ряду напряжений от Mg до Cu включительно, образуются оксид металла, NO2 и кислород:

2Cu(NO3)2 = 2CuO + 4NO2 + O2

Наконец, при разложении нитратов наименее активных металлов (расположенных в ЭРН правее меди) образуются металл, диоксид азота и кислород:

Строение

Вне зависимости от активности все металлы имеют общее строение. Атомы в простом металле расположены не хаотично, как в аморфных веществах, а упорядоченно – в виде кристаллической решётки. Удерживает атомы в одном положении металлическая связь.

Такой вид связи осуществляется за счёт положительно заряженных ионов, находящихся в узлах кристаллической ячейки (единицы решётки), и отрицательно заряженных свободных электронов, которые образуют так называемый электронный газ. Электроны отделились от атомов, превратив их в ионы, и стали перемещаться в решётке хаотично, скрепляя ионы вместе. Без электронов решётка бы распалась за счёт отторжения одинаково заряженных ионов.

Различают три типа кристаллической решётки. Кубическая объемно-центрированная состоит из 9 ионов и характерна хрому, железу, вольфраму. Кубическая гранецентрированная включает 14 ионов и свойственная свинцу, алюминию, серебру. Из 17 ионов состоит гексагональная плотноупакованная решётка цинка, титана, магния.

Рис. 2. Виды кристаллических решёток.

История

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам. Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений.

В 1793 году Алессандро Вольта, конструируя гальванический элемент (Вольтов столб), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду (ряд напряжений). Однако Вольта не связал этот ряд с химическими свойствами металлов.

В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (то есть последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции.

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым. Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов — тем, что называется химическим сродством». Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова, или просто ряд Бекетова).

Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода. Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» — расположению металлов по значению стандартных электродных потенциалов. Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.

Теоретические основы[править | править код]

Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе. Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.

В самом общем виде ясно, что металлы, находящиеся в начале периодов, характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование щелочных и щёлочноземельных металлов отражает явление диагонального сходства. Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu2+/Eu[источник не указан 3122 дня] до +1,691 В у пары Au+/Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий, а самым сильным окислителем — катионы золота Au+.

В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода.

История

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам. Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений.

В 1793 году Алессандро Вольта, конструируя гальванический элемент (Вольтов столб), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду (ряд напряжений). Однако Вольта не связал этот ряд с химическими свойствами металлов.

В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (то есть последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции.

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым. Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов — тем, что называется химическим сродством». Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова, или просто ряд Бекетова).

Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода. Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» — расположению металлов по значению стандартных электродных потенциалов. Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.

История[править | править код]

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам. Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений.

В 1793 году Алессандро Вольта, конструируя гальванический элемент (Вольтов столб), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду (ряд напряжений). Однако Вольта не связал этот ряд с химическими свойствами металлов.

В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (то есть последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции.

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым. Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов — тем, что называется химическим сродством». Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова, или просто ряд Бекетова).

Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода. Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» — расположению металлов по значению стандартных электродных потенциалов. Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.

История

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам. Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений.

В 1793 году Алессандро Вольта, конструируя гальванический элемент (Вольтов столб), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду (ряд напряжений). Однако Вольта не связал этот ряд с химическими свойствами металлов.

В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (то есть последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции.

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым. Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов — тем, что называется химическим сродством». Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова, или просто ряд Бекетова).

Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода. Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» — расположению металлов по значению стандартных электродных потенциалов. Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Наиболее активными считаются щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Таблица электрохимических потенциалов металлов

МеталлКатионφ, ВРеакционная способностьЭлектролиз (на катоде):
LiLi+-3,0401реагирует с водойвыделяется водород
CsCs+-3,026
RbRb+-2,98
KK+-2,931
FrFr+-2,92
RaRa2+-2,912
BaBa2+-2,905
SrSr2+-2,899
CaCa2+-2,868
EuEu2+-2,812
NaNa+-2,71
SmSm2+-2,68
MdMd2+-2,40реагирует с водными растворами кислот
LaLa3+-2,379
YY3+-2,372
MgMg2+-2,372
CeCe3+-2,336
PrPr3+-2,353
NdNd3+-2,323
ErEr3+-2,331
HoHo3+-2,33
TmTm3+-2,319
SmSm3+-2,304
PmPm3+-2,30
FmFm2+-2,30
DyDy3+-2,295
LuLu3+-2,28
TbTb3+-2,28
GdGd3+-2,279
EsEs2+-2,23
AcAc3+-2,20
DyDy2+-2,2
PmPm2+-2,2
CfCf2+-2,12
ScSc3+-2,077
AmAm3+-2,048
CmCm3+-2,04
PuPu3+-2,031
ErEr2+-2,0
PrPr2+-2,0
EuEu3+-1,991
LrLr3+-1,96
CfCf3+-1,94
EsEs3+-1,91
ThTh4+-1,899
FmFm3+-1,89
NpNp3+-1,856
BeBe2+-1,847
UU3+-1,798
AlAl3+-1,700
MdMd3+-1,65
TiTi2+-1,63конкурирующие реакции: и выделение водорода, и выделение металла в чистом виде
HfHf4+-1,55
ZrZr4+-1,53
PaPa3+-1,34
TiTi3+-1,208
YbYb3+-1,205
NoNo3+-1,20
TiTi4+-1,19
MnMn2+-1,185
VV2+-1,175
NbNb3+-1,1
NbNb5+-0,96
VV3+-0,87
CrCr2+-0,852
ZnZn2+-0,763
CrCr3+-0,74
GaGa3+-0,560
GaGa2+-0,45
FeFe2+-0,441
FeFe3+-0,425
CdCd2+-0,404
InIn3+-0,3382
TlTl+-0,338
CoCo2+-0,28
InIn+-0,25
NiNi2+-0,234
MoMo3+-0,2
SnSn2+-0,141
PbPb2+-0,126
H2H+
WW3+ (?)+0,11 (?)низкая реакционная способностьвыделение металла в чистом виде
GeGe4++0,124
SbSb3++0,240
GeGe2++0,24
ReRe3++0,300
BiBi3++0,317
CuCu2++0,338
PoPo2++0,37
ТсТс2++0,400
RuRu2++0,455
CuCu++0,522
TeTe4++0,568
RhRh++0,600
WW6++0,68
TlTl3++0,718
RhRh3++0,758
PoPo4++0,76
HgHg22++0,7973
AgAg++0,799
PbPb4++0,80
OsOs2++0,850
HgHg2++0,851
PtPt2++0,963
PdPd2++0,98
IrIr3++1,156
AuAu3++1,498
AuAu++1,691

2.2. Химические свойства металлов

По своим химическим свойствам все металлы являются восстановителями, все они сравнительно легко отдают валентные электроны, переходят в положительно заряженные ионы, то есть окисляются. Восстановительную активность металла в химических реакциях, протекающих в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов, или ряду стандартных электродных потенциалов металлов.

Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель — металлический литий, золото — самый слабый, и, наоборот, ион золото (III) — самый сильный окислитель, литий (I) — самый слабый.

Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно‒земельных металлов будут взаимодействовать непосредственно с водой.

Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

Физические свойства металлов:

1. Плотность металлов:

Легкие: Al, Na, Mg,Sn, Ga

Тяжелые: Cu, Pb, Fe, Hg, Cd

2. Температура плавления:

Легкоплавкие (t

Тугоплавкие (t>1000C): W, Cr, Fe, Mo, Nb

3. Твердость:

Мягкие: Na, Pb, Ba, In, Cd

Твердые: Cr, Fe, Zn, Ag

4. Общие свойства металлов: твердая кристаллическая структура, у большинства – серый цвет, металлический блеск, электро- и теплопроводность, ковкость и пластичность.

Способы получение металлов:

1. Пирометаллургия

Карботермия (при высоких температурах):

FeO + C = Fe + CO

Fe3O4 + 4C = 3Fe + 4CO2

Гидротермия (восстановление водородом)

WO3 + 3H2 = W + 3H2O

Fe2O3 + 3H2 = 2Fe + 3H2O

Вакуумтермия (восстановление более активными металлами)

KCl + Na = NaCl + K

TiCl4 + 2Mg = Ti + 2MgCl2

3BaO + 2Al = Al2O3 + 3Ba

2. Гидрометаллургия (как правило в несколько стадий)

1) CuO + H2SO4 = CuSO4 + H2O

2) CuSO4 + Fe = FeSO4 + Cu

3. Электрометаллургия – электролиз расплавов и растворов(подробнее эта тема рассматривается на уроке – электролиз)

Na[AlF4]

  • 2Al2O3 = 4Al + 3O2
  • 2CuSO4 + 2H2O = 2Cu + O2 + 2H2SO4
  • KCl = K + Cl2
  • 4NaOH = 4Na + O2 + 2H2O

Химические свойства металлов:

Вещество

Металл и условие реакции

Пример

С ПРОСТЫМИ ВЕЩЕСТВАМИ

  

Галогены:

F2, Cl2, Br2, I2

Большинство металлов

Fe(Сr) + Г2 = 2FeГ3

НО: Fe(Cr) + I2 = FeI2

С кислородом

Li, Ca, Al, Fe и другие

4Li + O2 = 2Li2O

4Al+ 3O2 = 2Al2O3

3Fe + 2O2 = Fe3O4

Na, K

2Na + O2 = Na2O2 (пероксид натрия)

K + O2 = KO2 (супероксид калия)

 

C серой образуются сульфида

Металлы реагируют при нагревании

2Na + S = Na2S

Fe + S = FeS

Cr + S = CrS

2Al + 3S = Al2S3

С азотом образуются нитриды

Реагируют при нагревании

6Li + N2 = 2Li3N

3Ca + N2 = Ca3N2

Fe + N2 = НЕ РЕАГИРУЕТ!

2Cr + N2 = 2CrN

С фосфором образуются фосфиды

При нагревании

Na + P = Na3P

Fe + P =FexPy (бертолиды)

С углеродом образуются карбиды

При нагревании

2Li + 2C = Li2C2

Ca + 2C = CaC2

4Al + 3C = Al4C3

C кремнием образуются силициды

При нагревании

6Li + 2Si = Li6Si2

Mg + Si = Mg2Si

C водородом образуются гидриды

С кальцием при нагревании

2Li + H2 = 2LiH

Ca + H2 = CaH2

Al + H2 = НЕ РЕАГИРУЕТ!

СО СЛОЖНЫМИ

ВЕЩЕСТВАМИ

  

С водой

При нагревании, кроме Na, Ca, Sr, Ba, K, Li

2Na + 2H2O = 2NaOH + H2

Mg + 2H2O = Mg(OH)2 + H2

3Fe + 4H2O = Fe3O4 + 4H2

В присутствии амальгамы

2Al + 6H2O = 2Al(OH)3 + 3H2

 

С солями

Вытесняют менее активный металл.

Реакция не идет с металлами от Li до Na (в ряду активности метллов)

Fe + CuSO4 = FeSO4 + Cu

2Mg + TiCl4 = 2MgCl2 + Ti

Реакции с оксидами азота

 

2Cu + NO2 = N2 + 2CuO

Cu + N2O = N2 + CuO

2Cu + 2NO = N2 + 2CuO

Сталь – сплав железа и углеродаНекоторые широко используемые сплавы:

Бронза – сплав меди с оловом

Латунь – сплав меди с цинком

Амальгамы – сплавы металлов, содержащие ртуть

Прочитано
Отметь, если полностью прочитал текст

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий