Содержание
Раздел 5. Векторы
Абсолютная величина и направление вектора
Вектор — это направленный отрезок. Направление вектора определяется указанием его начала и конца. На чертеже направление вектора отмечается стрелкой. Для обозначения векторов будем пользоваться строчными латинскими буквами а, b, с, … . Можно также обозначать вектор указанием его начала и конца. При этом начало вектора ставится на первом месте. Вместо слова «вектор» над буквенным обозначением вектора иногда ставится стрелка или черта.
Векторы АВ и CD называются одинаково направленными, если полупрямые АВ и CD одинаково направлены. Векторы АВ и CD называются противоположно направленными, если полупрямые АВ и CD противоположно направлены.
Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор.
Начало вектора может совпадать с его концом. Такой вектор будем называть нулевым вектором. Нулевой вектор обозначается нулём с чёрточкой (0). О направлении нулевого вектора не говорят. Абсолютная величина нулевого вектора считается равной нулю.
Равенство векторов
Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора. Из данного определения равенства векторов следует, что
равные векторы одинаково направлены и равны по абсолютной величине. Обратно: если векторы одинаково направлены и равны по абсолютной величине, то они равны.
Координаты вектора
Пусть вектор а имеет началом точку А1 (х1; у1), а концом точку А2 (х2; у2). Координатами вектора а будем называть числа а1 = х2 – х1, а2 = у2 – у1. Координаты нулевого вектора равны нулю.
Равные векторы имеют равные соответствующие координаты. И обратно: если у векторов соответствующие координаты равны, то векторы равны.
Сложение векторов
Суммой векторов а и b с координатами а1, а2 и b1, b2 называется вектор с с координатами a1 +b1, a2 + b2.
Теорема 10.1. Каковы бы ни были точки А, В, С, имеет место векторное равенство АВ + ВС = АС.
Сложение сил
Силу, приложенную к телу, удобно изображать вектором, направление которого совпадает с направлением действия силы, а абсолютная величина пропорциональна величине силы. Как показывает опыт, при таком способе изображения сил равнодействующая двух или нескольких сил, приложенных к телу в одной точке, изображается суммой соответствующих им векторов.
Представление силы в виде суммы сил, действующих в двух заданных направлениях, называется разложением силы по этим направлениям. Удобно производить разложение вектора по двум перпендикулярным осям. В этом случае составляющие вектора называются проекциями вектора на оси.
Умножение вектора на число
Произведением вектора (а1; а2) на число λ называется вектор (λа1; λа2).
Теорема 10.2. Абсолютная величина вектора λа равна |λ| |a|. Направление вектора λа при а ≠ 0 совпадает с направлением вектора а, если λ > 0, и противоположно направлению вектора а, если λ < 0.
Разложение вектора по двум неколлинеарным векторам
Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Коллинеарные векторы направлены либо одинаково, либо противоположно.
Пусть а и b — отличные от нулевого неколлинеарные векторы, тогда любой вектор с можно представить в виде с = λа + ɳb.
Скалярное произведение векторов
Скалярным произведением векторов a(a1; a2) и b(b1; b2) называется число а1b1 + а2b2. Скалярное произведение а • а обозначается а2 и называется скалярным квадратом.
Для любых векторов а(а1; а2), b(b1; b2), с(с1; с2)(а + b) • с = ас + bс.
Теорема 10.3. Скалярное произведение векторов равно произведению их абсолютных величин на косинус угла между ними.
Из теоремы 10.3 следует, что если векторы перпендикулярны, то их скалярное произведение равно нулю. И обратно: если скалярное произведение отличных от нулевого векторов равно нулю, то векторы перпендикулярны.
Разложение вектора по координатным осям
Вектор называется единичным, если его абсолютная величина равна единице. Единичные векторы, имеющие направления положительных координатных полуосей, называются координатными векторами или ортами.
Для любого вектора a (a1; а2) получается разложение а = а1е1 + а2е2.
Вы смотрели «Геометрия 8 Погорелов: все теоремы и определения» — краткое повторение геометрии за 8 класс (основные понятия, определения и теоремы без доказательств).
Геометрия в природе
В окружающей действительности геометрия присутствует повсеместно. Природа щедро внедрила правильные геометрические формы практически во все свои творения. В затейливых узорах снежинок, составленных из многоугольников, отчетливо просматриваются шестиосные симметричные формы, объединенные общим центром.
Вообще, легкие зимние снежинки – это яркое воплощением красоты и порядка окружающей нас природы, на каждом шагу являющей примеры многообразия геометрических форм, объединенных принципом единства.
Распускающиеся нежные цветы и колючие ветвистые кустарники – при внимательном рассмотрении содержат в своей структуре правильные линии, взаимодействующие по геометрическим законам.
Архитектура и геометрия
Геометрические принципы внедрены во все проекты архитектурных сооружений. Неоспорима решающая роль геометрии при строительстве любых зданий.
Строительное проектирование всегда производится с учетом пространственных форм, влияющих на зрительное восприятие и относящихся к важнейшим характеристикам любого здания.
Геометрический вид, являющийся важным свойством сооружения и определяемый трехмерными размерами (ширина, глубина, высота), зависим от их соотношения. При равных размерах – форма архитектурного сооружения выглядит объемной, при одном из размеров значительно меньшем, чем два остальных – сооружение выглядит плоским, а в случае, когда два размера намного менее одного, сооружение приобретает линейный вид.
Архитектурные свойства определяются протяженностью по трем координатным осям и характеризуются размерами по высоте, ширине и глубине относительно размеров человека или смежных строений.
n1.docx
Геометрия, теория 7 класс. Составила Аверкова Т.Е.
7 класс1через любые две точки можно провести прямую, и притом только одну.две прямые либо имеют только одну общую точку, либо не имеют общих точек.Угол — фигурыравными называется серединой отрезка. биссектрисой угла.единицу измерения ( масштабным отрезком).Развернутый угол равен 180°.прямымострым тупым смежными.Сумма смежных углов равна 180°. вертикальными, Вертикальные углы равны.перпендикулярнымиДве прямые, перпендикулярные к третьей, не пересекаются. периметром.Признаки равенства треугольников:
- Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
- Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
- Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Окружностьюцентром окружностирадиусом окружностихордойдиаметромкругом.перпендикуляром,основанием перпендикулярамедианой биссектрисойвысотойВ любом треугольнике медианы, высоты и биссектрисы пересекаются в одной точке. равнобедреннымравносторонним.Теорема: В равнобедренном треугольнике углы при основании равны.Теорема: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.параллельнымиПризнаки параллельности:
- Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
- Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
- Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
Аксиомы:
- через любые две точки проходит прямая, и притом только одна.
- на любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
- от любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один.
- Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Следствия из аксиом:
- Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
- Если две прямые параллельны третьей прямой, то они параллельны.
Обратные теоремы:
- Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
- Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.
- Если две параллельные прямые пересечены секущей, то соответственные углы равны.
- Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Сумма углов треугольника равна 180°. Внешним углом треугольникаВнешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.остроугольнымтупоугольнымпрямоугольнымТеорема:Следствие 1:Следствие 2:Теорема о неравенстве треугольника:Следствие:Некоторые свойства прямоугольных треугольников:
- Сумма двух острых углов прямоугольного треугольника равна 90°.
- Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
- Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.
Признаки равенства прямоугольных треугольников:
- Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
- Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
- Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
- Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.
Перпендикуляррасстоянием от точки до прямойВсе точки каждой из двух параллельных прямых равноудалены от другой прямой. расстоянием между этими прямыми.Медиана прямоугольного треугольника, , равна половине гипотенузы. 1 По учебнику Атанасян Л.С. и др. Геометрия 7-9 кл
«Начальные геометрические понятия»
Ключевые слова конспекта: начальные геометрические понятия, математические утверждения в геометрии, аксиома, определение, теорема, доказательство, точка, прямая, линия, плоскость, луч, отрезок, длина отрезка, измерение отрезков, единицы длины, расстояние между двумя точками.
Математические утверждения в геометрии
Аксиома – это утверждение, принимающееся как истинное без доказательства. Слово «аксиома» происходит от греческого слова «аксиос» и означает «утверждение, не вызывающее сомнений».
Определение – четкое формулирование того или иного математического понятия.
Теорема – математическое утверждение, истинность которого устанавливают путем доказательства.
Признак – утверждение,которое позволяет доказать, что данная фигура является фигурой, которая имеет данные качества или связана необходимыми отношениями.
Доказательство – размышление, в ходе которого устанавливается истинность или ложность утверждения.
Простейшие геометрические фигуры
Точка — понятие, не имеющее значения. Представление о точке дает след на листе бумаги, сделанный хорошо заостренным карандашом. Слово «точка» является переводом латинского слова «pungo», что означает «тыкаю», «дотрагиваюсь». Обозначают точки большими латинскими буквами: А, В, С.
Прямая — понятие, не имеющее значения. Представление о прямой дают: туго натянутая нитка; луч света, проходящий сквозь узкое отверстие. Обозначают прямые латинскими буквами: а, b, … или двумя большими латинскими буквами: АС, ВС, … Прямая бесконечна.
Слово «линия» происходит от латинского слова «tinea», что значит «лён», «льняная нить», иногда это слово понимают как «прямая линия», и отсюда происходит слово «линейка».
Плоскость — понятие, не имеющее значения. Представление о плоскости дают: поверхность стола, оконного стекла, поверхность озера в тихую погоду и т.п. Плоскость предcтавляют неограниченной, идеально ровной и гладкой. Обозначают плоскости маленькими греческими буквами: α, β, …
Луч (полупрямая) — часть прямой, состоящая из всех точек этой прямой, которая лежит по одну сторону от данной на ней точки (начало луча).
Отрезок и его длина
Отрезок — часть прямой, ограниченная двумя точками, включая эти точки. Равные отрезки — отрезки,которые совпадают при наложении. Середина отрезка — точка, которая делит отрезок пополам.
Расстояние между двумя точками
Расстояние между разными точками — длина отрезка с концами в данных точках. Расстояние между точками, которые совпадают, равно .
Для любых точек А и В расстояние от А до В равно расстоянию от В до А. Для любых трех точек расстояние между двумя из них не больше суммы двух других расстояний.
Это конспект по теме «Начальные геометрические понятия». Выберите дальнейшие действия:
- Перейти к следующему конспекту: Аксиомы планиметрии
- Вернуться к Списку конспектов по геометрии
Геометрия 7 класс задача по теме треугольники, пояснение решения задач
Решим несколько задач про треугольники:
- нахождение периметра;
- доказательство равенства треугольников.
Сумму периметра АВС также записали с помощью сложения сторон. Затем упростили это сложение, записав: 32 = 2 АВ + 2 ВМ (так как АВ и АС равны — равнобедренный треугольник; ВМ и СМ тоже равны). Потом эту запись сократили, разделив на 2.
Вышло, что сумма двух сторон равна 16 см. Остается найти третью сторону (АМ). Она входит в треугольник АВМ, периметр которого равен 24 см. Тогда, чтобы найти третью сторону (АМ, нужно просто 24 отнять 16, вышло 8 см. В примере подставили в уравнение, чтобы не запутаться.
Решим задачу на нахождение угла в треугольнике.
Чтобы найти угол С в задаче потребовалось узнать, чему равен угол В. По условиям известно, что внешний В равняется 110º. Знаем, что развернутый угол равняется 180º (это внешний и внутренний угол В в сумме). Поэтому от 180 отнимаем 110. Получается угол В = 70º.
Треугольник равнобедренный, значит углы при основании одинаковые ⇒ угол В = углу А = 70º.
Поскольку сумма углов треугольника равна 180º (по правилу), значит угол С = 180 — углы А и В = 180 — 70 — 70 = 40°.
Начертательная геометрия
Инженерное образование в обязательном порядке предполагает изучение начертательной геометрии наряду с другими важными дисциплинами.
Для отображения геометрических характеристик зданий, машин, механизмов создаются чертежи их конструкций, определяющие особенности формы и размеров будущего изделия.
Начертательная геометрия представляет собой теоретическую базу, без использования которой невозможно создание специальной документации, называемой техническими чертежами. Чертежи являются необходимым средством для визуального отображения идеи создания той или иной технической продукции. На чертежах, в графической форме доступной для понимания, определены точные размеры и конструкция будущего продукта, представлены методы исполнения и возможность исследования изделия и его составных частей.
Для правильного выражения своих мыслей и идей с помощью эскизов и чертежей, необходимо тщательное изучение начертательной геометрии, включающей в себя геометрические законы построения изображений различных объектов с учетом многообразия их свойств и пространственного расположения относительно друг друга.
Начертательная геометрия, являющаяся графическим средством отображения информации, нашла широкое применение в жизни человечества.
Геометрическим формам присущи образность, символичность, компактность, доступность понимания. Простота и лаконичность графических изображений способствуют их повсеместному применению во всех областях созидательной деятельности человека.
Графика используется в качестве международного языка при общении народов различной культуры и национальных особенностей. Знание графического языка является преимущественным показателем при поиске работы, способствует совершенствованию образования и расширяет возможности воплощения идей человека в жизнь.
Медианы треугольника
Определение. Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.
Свойства медиан треугольника:
- Медианы треугольника пересекаются в одной точке. (Точка пересечения медиан называется центроидом)
-
В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
AOOD = BOOE = COOF = 21
-
Медиана треугольника делит треугольник на две равновеликие части
S∆ABD = S∆ACD
S∆BEA = S∆BEC
S∆CBF = S∆CAF
-
Треугольник делится тремя медианами на шесть равновеликих треугольников.
S∆AOF = S∆AOE = S∆BOF = S∆BOD = S∆COD = S∆COE
- Из векторов, образующих медианы, можно составить треугольник.
Геометрия 7 класс объяснение основных тем, понятно для детей
первые геометрические объекты
Начать стоит с самого понятия «геометрия». С древнегреческого слово переводится как земля и измерение. Эта древнейшая наука, которая появилась в связи с необходимостью строить здания, дороги, измерять объекты и прокладывать границы.
Первыми геометрическими фигурами, которые стоит усвоить, являются точка, прямая, отрезок.
Точка — это абстрактный объект в пространстве. Никаких измерительных характеристик она не имеет (но можно определить координаты).
Через две точки можно провести прямую линию (причем единственную); она не искривляется, не имеет конца и начала, продолжается до бесконечности.
Иными словами, прямая — это множество точек на одной линии, продолжающееся до бесконечности.
Запомните важную аксиому:
Если часть прямой линии ограничить точками, получится отрезок. У отрезка есть и начало, и конец. Обозначается он большими буквами (например, отрезок КL, SD, AB и т.д.).
Если две прямые пересекаются под углом 90º, то говорят, что они перпендикулярны.
Если прямую ограничить только одной точкой, то получится два луча. У луча есть начало, а конца нет (уходит в бесконечность). Называют луч двумя буквами, например, ОА.
Еще одна фигура — угол. Он представляет собой точку и два луча, исходящие из нее. Лучи — это стороны угла, а начало этих сторон — его вершина. От того, сколько градусов составляет угол, зависит тип треугольника, который можно образовать.
О равных треугольниках. Равнобедренный треугольник
Треугольником принято считать фигуру, которая состоит из 3-х точек. Причем точки эти не должны лежать на одной прямой, а соединяются они отрезками.
Треугольники можно различать по двум признакам: размеру сторон и размеру углов.
Чтобы понять, равны ли треугольники, познакомимся с признаками равенства этих фигур.
Остановимся отдельно на равнобедренных треугольниках. Если 2 стороны треугольники равны, то его называют равнобедренным.
- 2 угла в нем равны;
- биссектриса одновременно является высотой и медианой;
- медиана — биссектриса и высота;
- высота, соответственно — медиана и биссектриса.
Чтобы понять, параллельны ли прямые, нужно усвоить 3 основных признака.